INSTITUTE or
SPACE SCIENCE

www.spacescience.ro

LISA Mission: General Presentation and
Romanian Contributions

CONSORTIUM
https://www.elisascience.org/

Institute of Space Science (ISS) in Bucharest-Magurele, Romania




LISA Mission

Scan me f(?r a
« The LISA (Laser Interferometer Space Antenna) mission LISA movie!

will be one of the first space-based gravitational wave observatories.

- The observatory will consist of three satellites connected via laser signals
and will be capable of in-depth studies related to various physics

phenomena (from black hole formation to the expansion rate of the
Universe).

- Most importantly, LISA, with the \
help of gravitational waves,
will “listen” to different evolution

stages of the Universe.
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¢ 1657 members; ~ 353 groups and departments

e 16 countries with direct contributions:
e +10 associate countries: IMidmc=-—11TE ] o
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19 full members/é |
on 3 directions |
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Figure 1 Organisation chart of the primary groups within the LISA Consortium, showing formal lines of reporting.
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Name

e.g. Albert Einstein
E-Mail

e.g. user@example.com
Affiliation

e.g. AEl Hannover

Application type

O Group

O Associate

Attachments
Choose files |No file chosen
(Spreadsheet format preferred, PDF will also be accepted.)

Comments

(optional)

Join LISA

https://signup.lisamission.org/signup

LISA Consortium online application form

Step by step

1. Download and fill out the £ application
spreadsheet template

2. Consult the 2 Consortium Application
Process Document, or [Z sample
application one, or [Z sample application
two as references.

3. Fill out this application web-form and
attach the completed application
spreadsheet.

4. Submit the application by clicking the
"Send application" button.

Help

LISA Consortium membership is handled by the
LISA Membership Management Team (MMT).
Additional information about membership and
membership management will be available on the
LISA Consortium User Guide. If you run into issues
or have questions with regards to your LISA
consortium application please contact us.

Additional Documents

The following documents are available for
reference when indicating areas of commitment:
[Z Consortium Management Plan

2 Consortium Application Description

[Z Description of LSG Work Packages

Code of Conduct and Privacy Policy

All members are required to abide by the LISA
Consortium 2 Code of Conduct.

To join the consortium, all members must also
agree to the [ Privacy Policy.




ISS-Science Group (ISS-Sci)

Low-Latency Pipelines will be responsible for delivering the fastest responses related to
gravitational wave detections and also for alerting other observatories (anticipating
electromagnetic follow-ups).

Data analysis using neuronal networks running on CPUs but also on space qualified FPGA
and quantum computers

Waveform analysis: we will provide wave- form simulation software and also a data-base for
multiple type waveform solutions.

Source catalogs: Catalogs of GW sources, their masses and also predictions for merger rates.
Multimessenger science: Complex analysis of astrophysical sources using several
messenger's, photons, gravitational waves, neutrinos, cosmic rays

Waveform analysis Source catalogs Multimessenger science
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ISS-Computing Group (ISS-Comp)

ISS will design and build a dedicated computing centre (DCC) that will perform data
analysis, simulations and provide data storage for the LISA Collaboration.

First server already acquired and integrated, OS installed and used for prototyping: Server
AMD single socket A+ Server, Nvidia Tesla T4, more to follow.
Ut =

.......




ISS-Hardware Group (ISS HW)

ISS committed to participate in the development of a precise positioning system for the
three satellites — the CAS system (Constellation Acquisition Sensor), an essential
component for correct observations. The positioning will be done with a laser system, each
satellite sending a laser beam to each other. The received signal will determine the
reorientation of the satellites in the right position.

Beamsplitter

Detector

Mirror M,;

Detector

Mirror M,,

117 mm

Schematics of the CAS system

Schematics of the LISA satellite (left) and the placement of the test masses

and the optical bench (Schieicher, A., et al., In-Orbit Performance of the LISA Pathfinder
Drag Free and Attitude Control System, Proceedings of the 10th International ESA Conference on

Guidance Navigation & Control Systems, 29 May — 2 June 2017, Salzburg, Austria, 2017).
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Figure 1 Organisation chart of the primary groups within the LISA Consortium, showing formal lines of reporting.




ISS-Science Group (ISS-Sci): Low-latency pipelines

® We need the capability to rapidly identify source candidates in the instrument data so that
alerts can be sent out to partners for follow-up observations.

®* A mechanism must be in place to trigger protected observing periods in advance, to
ensure the existence of good quality data for the science analysis.

® Understanding the performance of the instrument in real time is also important, so that
the general quality of data can be checked and any problems on the satellite identified
quickly.

® The tools in this work package are designed to generate and distribute alerts by
monitoring the LISA data in real time, as well as monitoring the instantaneous data

4.1 Create low latency pipeline to run on "realistic' data 3
4.2 Alert generation for EM observatories 3
4.3 Trigger generation from GW signals 2
4.4 Generation of data quality metrics and flags 2
4.5 Source-based observatory diagnostics 2
4.6 Search and classification of unmodelled signals 2
4.7 Assessment and triggering of protected periods 1

1: end of phase A; 2: demonstration of capabilities at TRL6; 3: development of sci ops



Low-latency pipelines

4.1 Create low latency pipeline to run on “realistic' data

The LISA instrument will produce an evolving data set, and the data analysis will likewise need
to produce an evolving set for the many signals in the data. The goal is to build, run and test
several different pipelines in order to explore as many options as possible.

Working steps Deliverables

® Combine pipelines for different sources ® Pipeline for source identification. Initial solution
® Test the performance of the pipeline on the o i lolbel 8

realistic data in the presence of realistic noise ® Refined localization of black hole mergers
® Test alert generation ® Rapid identification of transient signals

® Low-latency noise characterisation and diagnostic ® Continuous updates on the noise characterisation

of the observatory

Timeframe and human resources List of projects

requirements

® End of Phase A: requirements document and ® Noise characterisation in the presence of signals
preliminary versions of pipeline components .

Prototype the pipeline
® Mission adoption: working version of the pipeline

® C(losed to the launch of the mission: Fully
functional pipeline



Low-latency pipelines

4.2 Alert generation for EM observatories

To maximize collaboration with the wider astronomy community new and updated LISA
sources must be rapidly and predictably communicated with EM observers. Low-latency
source characterization and localization tools to get EM observers on source with minimal
delay are of paramount importance.

Working steps Deliverables

Collect all relevant details of the experiments, by
elaborating a database of experiments

Providing procedures to generate alerts and distribute
them to the observatories

Study the alert stages

Veto procedure(s) and procedures for calculate/estimate
the false alarm rate.

Develop a phone application based on the state-of-the-art
smart technologies that can take alerts from the Cloud.

Possible subpackages

Collecting and maintaining the database of relevant EM
observatories

Tools for alert distribution

List of projects

Database of potential follow-up experiments and their
classification

Framework for the alert generation for the observatories
Procedure to generate alerts;

Studies related to the role, description, content,
classification and the stages/lifetime of alerts

Requirements document and software for alert generation
for EM observatories.

Database of potential follow-up experiments and their
classification based on the time lapse for their signal to
pick up

Web and phone app for the alert generation



Low-latency pipelines

4.3 Trigger generation from GW signals

We will need to develop data analysis tools, which can perform fast parameter estimation of
the gravitational wave signals. Especially important are sky localisation and time of
coalescence for MBHBs.

Working steps Deliverables

Develop the tool for the rapid parameter
estimation for the MBHBs, especially concerning
the sky localisation

Tools for low-latency updates to MBHB source
localization in the late stages of the merge

Tools for rapid LISA source localization software
for short-lived transients. The procedure might be
different from the long lived MBHBs

This is the critical deliverable for the
multimessenger follow-ups and setting of the
protected periods

Requires fast waveforms

Requires accurate current noise estimates

Algorithms and implementations for rapid LISA
source localization software for short-lived
transients

Tools for fast parameter estimation

Tools for low-latency updates to MBHB source
localization in the late stages of the merger

Scientific publications describing the method

Fast waveform database

Tools for rapid LISA source localization software
for short-lived transients

Tools for low-latency updates to MBHB source
localization in the late stages of the merger



Low-latency pipelines

4.4 Generation of data quality metrics and flags

For the different levels of data quality we will need to identify data quality flags. Data quality

flags will be used to provide an indication as to the quality of the data for speciffc periods of
time, and to explain what are the problems.

Working steps Deliverables

® Develop the tool for the rapid parameter ® Procedure to estimate instrument's noise;
estimation for the MBHBs, especially concerning

o Catalog of the noise sources (transient and
the sky localisation

continuous);
® Tools for low-latency updates to MBHB source o

S A record of the data quality as a function of time;
localization in the late stages of the merge

® Data quality flags describing the severity of noise

® Tools for rapid LISA source localization software i
problems;

for short-lived transients. The procedure might be
different from the long lived MBHBs ® A daily page containing data quality indicators

Timeframe and human resources Possible subpackages
requirements

® Many data quality metrics will likely not converge ® Estimates of noise power spectral densities;
until the completion of the assembly, integration,

. _ . ; Glitches in TDI channel and appropriate auxiliary
verification and testing phase of the satellites.

channels: a low latency pipeline to identify
correlations.



Low-latency pipelines

4.5 Source-based observatory diagnostics

General idea is to use verification binaries (VB) as a tool understand the instrument.

Working steps Deliverables

The objective is to determine how verification
binaries be used to improve upon the TDI ranging
that uses pseudo random noise (PRN) modelling,
how do the (expected) presence and absence of
these binaries in various TDI observables
complement the PRN-based TDI ranging

Also, how can VBs be used to validate the
calibration of the amplitude and phase of the
signals from LISA

Pipeline that uses VBs as prior in an optimal
estimation method to determine whether adding
information from the VBs' signals changes TDI
ranging

Pipeline for amplitude and phase calibration for a
strain and uncertainty of the VB

WP 1.4 Provide GB waveforms

As a first study to do is to look at what ranging
errors can be derived from VBs alone;

Then try to combine PRN and VBs;

Determine if VBs can be used to calibrate the
amplitude and phase of the signal.



Low-latency pipelines

4.6 Search and classification of unmodelled signals

The past research has shown that new unexpected sources are revealed whenever a new
detection/observation capability becomes available. Therefore, it is very important to have
methods to detect gravitational waves from unmodelled sources.

Working steps Deliverables

® Developing techniques that can distinguish ® Phenomenological models for the unmodelled
unmodelled GW signals from instrumental GW transients and methods to characterize them
i ® Algorithms that can be used to extract

® Developing techniques to characterize unmodelled GW signals
e ® Software implementation of the algorithms to

® Developing the necessary LLP software to extract extract unmodelled GW signals, which will run as
transients part of the low-latency pipeline

® Concurrently using of multiple methods to ® Databases with identified unmodelled GW signals

enhance the unmodelled GW transients detection.

Timeframe and human resources List of projects
requirements

® This is largely uncharted territory. Good to ® Study the coherent WaveBurst (cWB) algorithm
explore multiple approaches over the next several which has been applied to LIGO / Virgo for using
years. in the case of LISA



Low-latency pipelines

4.7 Assessment and triggering of protected periods

The goal here is to identify the mechanisms and decisions involved in triggering a protected
period on the observatory. We also need to look at the constraints coming from the operations
and the instrument itself.

Working steps Deliverables

® We have to identify the routine which will ® Technical note, which identifies the loss of science
combine the information on the scheduled due to the gap in data close to the merger of
antenna repointing with the triggers of the MBHB
coalescence time from the MBHBs and ensure o

: . . Procedure that monitors: the schedule of the
that LISA is operational during the merger and

antenna repointing; triggers of the MBHB events

o and based on this information defines protected
® Moreover we need to ensure that routine periods within the allowed range
Hll{[err?}?tloris ire SChidlcllleld (11r1 SLEE fadV:ﬁy as to ® Tools to communicate protected periods to
allow them to be rescheduled to avoid the SOC/MOC
protected period
Timeframe and human resources List of projects
requirements
® The limitations on how much in advance we can ® Routine to combine predictions for the
trigger the protected periods and what does it coalescence time and ringdown length with the
imply for the detection, parameter estimation and schedule restrictions in order to find the optimal
multimessenger observations have to be adjustment scheme.

identified by the end of Phase A.



ISS-Science Group (ISS-Sci): Low-latency pipelines

LISA Satellite
NEURAL NETWORKS

DEPLOYMENT AND EXECUTION

Us1ng.AI - (9 - (-
techniques, the L
pipeline will detect :FN:EN:

L] FPGAs B8 FPGAs
1 i

and characterize
GW events and
deliver alerts
related to
gravitational wave
detections to other
observatories.

ISS HPC Data Center
(Server Cluster for Machine Learning)

Refined Data
ﬁ

u
New NN prediction




ISS-Science Group (ISS-Sci)

LISA simulator (LisaNode)
Incld. Noise and TDI

Data processing and

signal features .

Data time series NN NN NN
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ISS-Science Group (ISS-Sci)

(https://www.mathworks.com/matlabcentral/fileexchange/)
Quick Gravitational Wave Data Generation

This code is a basic computer implementation of the quadrupole formalism of general relativity applied to point-
mass binary systems in circular orbits.

The code was written with the aim to 0.75 4

efficiently generate large amounts of
parameter-dependent gravitational 0.50 A H
waveform time-series used for the incipient S 0.25 - ﬂ n ﬂ )
development of neural networks dedicated T "
to the detection and classification of < 0.00 -
gravitational waves. i

~ —0.25 - U J.
The variable source parameters considered £ 0504 u ) “ “
are the binary mass ratio, orbital

inclination, distance to source and antenna —0.75 1
pattern coefficients. The generated 1,004
gravitational waveforms are either "clean" ] l l l l l

or distorted with adjustable additive 0 >0 100 150 200 250

. t(s)
random noise.

Besides gravitational waveforms, the code also computes the parameter-dependent time-evolution of the main
physical quantities in the quadrupole formalism (orbital separation, gravitational waves frequency, amplitude
and phase).




Interpretation of gravitational wave signals based on the parameters of the
sources

When it comes to the Gravitational Wave (GW) sources, Massive
and Supermassive Black Hole Binaries (MBHB) present certain
parameters with great effect on the aspect of the waveform. Thus,
by analyzing the shape of the signal, we can determine the type of
event that causes the space-time ripples and vice-versa. We are of
course interested in the LISA frequency range, but the
LIGO/VIRGO data is a great way to practice and validate the
algorithm.

Inspiral Merger Ringdown
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ISS-Science Group (ISS-Sci)

= With the LDC tools (LISA constants, LISA instrument, LISA GW response), we can

stmulate our own waveforms in the LISA frequency range in order to train neural
networks meant to differentiate GWs produced by MBHB sources

B (b)

lllll

hp_10000

Simulations realized with the LDC tools in order
to emphasize the effect of the mass ratio (a), the
signal-to-noise ratio (b) and the moment of
coalescence (c) upon the waveform of a GW

L@




ISS-Science Group (ISS-Sci)

Previous activities:

» A software platform and a database containing present and future experiments capable to detect EM and
non-photonic (e.g., cosmic rays, neutrino, etc.) GW counterpart signals. The source parameters inferred
from the GW event (Low Latency Pipeline) are to be used by the LISA alerting system

» A software platform and a database which can accommodate with simulated GW waveforms from
different types of sources, aimed to support rapid data analysis procedures required by the LLP to decide
on setting the instrument in a protected state and/or alerting potential observers of the astronomical
counterpart signals

Current activities:

Developing of a CNN in order to detect a GW signal from EMRI, implying a number of steps, like:

« Installing and configuring the appropriate software frameworks to: Simulate EMWI waveforms using
both analytical (very fast but missing some waveform details) and numerically (accurate but at least one
order of magnitude slower); Simulate Galactic Binaries stochastic signal, this being the most important
noise that poses major problems in the analysis of the gravitational signal of interest; Generate the LISA
response to the detected gravitational wave (it depends on the orbit and the orientation of the satellites
constellation relative to the GW source)

* Conducting a number of studies to determine the optimal NN configuration and the optimal form of the
input data (data series, spectra, spectrograms). The spectrogram seems to be the best choice since it
reconcile the other two options: the time series which contains all the information but is a very big data
and the spectrum which is much more smaller data but are missing the time information

« Developing a CNN to analyse the GW spectrograms, the purpose being to detect the presence of an
EMRI regardless of the time series content (such as the simultaneous presence of other GW signals from
GB, MBHB, SMBHB)




ISS-Science Group (ISS-Sci)

Some aspects regarding the detection of EMRI signals by LISA:
A SMBH with 10°M. will capture un CO end may generate an EMRI GW signal once in 10° + 108 years

LISA can detect such signals from cosmological distances; some studies (Babak et al. , Phys. Rev. D 95, 2017)
suggest that in one year, LISA will detect from few to few thousand EMRI signals

The study of the EMRI events detected by LISA will contribute to the testing of GR in strong field regime,
permitting the direct study of the geometry of the Black Holes (Kerr or Schwartzchild metrics).

z2[rg
20

llustration of an EMRI orbit in Kerr spacetime, appropriate for a short
portion of an EMRI around a

spinning MBH. The central black hole has a mass M = 10°M. and a
dimensionless spin of 0.9. Distances

are measured in units of the gravitational radius r; = GM/c* . The
innermost stable circular orbit for this

MBH would be at r = 2.3r, r . The coordinates have been mapped into
Euclidean space to visualise the orbit.

Credit:
https://arxiv.org/pdf/1903.03686.pdf



https://arxiv.org/pdf/1903.03686.pdf

ISS-Science Group (ISS-Sci)

185520 le-20

1.0 1.0 4

0.5 | 0.5

0.0 0.0

0 50000 100000 150000 200000 250000 0.0 05 10 15 50 55
1eh

le—-20

The “plus” (orange) and “cross” (blue) components of the GW 2.0
from an EMRI, in 3 days (left), 1 month (central) and 2 years
(right).

1.5 1

1.0

The data were obtained with the FEW software 05
(FastEMRIWaveforms), with the following source parameters: 0.0
M = 1e6 (Mass of MBH in MSun); m = 1e2 (Mass of CO in
MSun); a = 0.2 (MBH spin);

pO = 14.0 (Initial semi-latus rectum); eo = 0.6 (initial
eccentricity; dist = 1.0 (distance in Gpc) —151

T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5
le7




ISS-Science Group (ISS-Sci)

» Low-Latency Bi-LSTM Neural Network Classifier (LL-BiLSTM) implementat in Matlab

» Deep Learning programs for classifying GW waveforms with Python (DL MLP)
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<1017 Class A, Mass Ratio g=1
-~ = ™ T T T — == = T T T o\ | @] raining Progress (11-11-2020 155348)
% §E : \ . / ; . \\.\ . /1 Training Progress (11-Jul-2020 15:53:48)
0 100 200 300 400 500 600 700 800 900 1000 S:N ™ -
t(sec) | i |
, x10™ Class B, Mass Ratio q=302 2 -
- YV \ BB J NN WA N AN c: R
2 \VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAYAVAY; |
0 100 200 300 400 500 600 700 800 900 1000 £ o3 L i
t{sec) =
<1071 Class C, Mass Ratio =500 = m = B B
£ SNV WIA WV i
0 100 200 300 400 t(zzoc) 600 700 800 900 1000 %g Confusion Chart for LSTM - Test Data
<1014 Class D, Mass Ratio q=755 gé Ei
A AR SAAANAAAE ] ‘f”“‘*“"’“‘l’f:”wm e
) 0 50 100 150 200 250 300 350 400 450 500 e
t(sec)
(10714 Noisy Class D, Mass Ratio q=755
R i Bl o <l 8 < B L L e
0 50 100 150 200 250 300 F
t(sec) E
- : The algorithm E
Multiple waveform classes with and 5

works good for any
number of classes
and it’s a viable
candidate classifier

without noise

7.0% 10.8%

c D
Predicted Class




ISS-Science Group (ISS-Sci)
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» Deep Learning programs for classifying GW waveforms with Python (DL
MLP)
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Activities and results
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Identification and classification of a gravitational wave signal from a
batch of data (noise and hidden signal).

@

True Class
[a]

o

NN: trained with gravitational wave signals and noise data files (16,
000 gravitational waveforms (“clean” and “noisy”) and 4000 noise

100.0% 100.0% data files).

Environment: Matlab Categories: five (A, B, C, D, N)

N A B (c D
Predicted Class .. .. . .

Training accuracy: 98.71  Training time: ~308 minutes
Confusion matrix for the one-month long data set
Testing accuracy: 98.55% Testing time: < 1 minute

NN identified the hidden waveform

& and classified it correctly. /
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Deep Learning Models

Desp-Leaxning-Madelse
2. DL-LL CNN Architecture

Input Layer:
. Input Shape = (9, 1)
l. Input Shape =

#1 Convolutional Hidden Layer:
* Filters =64
*  Kernels=3
* Activation = ReLU

l ReLU

#2 Convolutional Hldden Layer:
* Filters =128
* Kernels=3
* Activation = ReLU

ReLU

Ll!iSA

CONSORTIUM

" DeJshigrning Low

Lovd 833 Multil
C onvolutrcﬁmﬂ’ tron
Neural Networi

itput Layer:
N ra—
Activation =
Softmax

INSTITUTE or
SPACE SCIENCE

Www.spacescience.ro

Dense Output Layer:

Neurons = 5
Activation =
Softmax
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Inference DL-LL MLP | JAN
Li S

Indexance Rkusloh (N ot oRTIUM

Inference Confusion Matrix

. . 1= o) o o - -
Confusion Matrix // DL-LL-CNN 96.14 % 100% Trammg & Validation:

S 96.17% 0.02% o Training Acc. = 99.88%

75% o Validation Acc. = 99.75%

m_ o Training loss = 7.22 106~

5 O 4 97.44% <09 > Validation loss = 8.91 1062

E:j o Training time=3/mim2M)5l15seec
o - 25% Inference:
- 4 0.25% o Inference Acc. = 88.76%

- 0% o Inference time = 2 min 45.92 sec

Predicted Class




Activities and results

Gravitational Waveforms
ONLY NOISE, Mass Ratio : q = 1221

Gravitational Waveforms
ONLY NOISE, Mass Ratio : q = 100 =—

h.(q, t)
|
. :
hi(q, t)

SIGNAL + NOISE, Mass Ratio : q = 100 1e-13 SIGNAL + NOISE, Mass Ratio : q = 1221

hi(q, t)
hi(q, t)

- SUBTRACTED SIGNAL, Mass Ratio : q = 100 SUBTRACTED SIGNAL, Mass Ratio : q = 1221
Ex 2
i =

0.0 25 5.0 7.5 10.0 125

for 15,886 simulated GW w&veform signals, divided into 4 mass ratio classes,
with 90% of them used as a training sample (Max. accuracy valve = 99.37%)2

; mOorPOBBRGHE==npm B A pochs |+ 5 075 Traln

) . . ‘-I-I Cross-Entropy Loss Test
- 350 i 050 ¥

- © - 250 V 025 B —

~ 4.1e+02 A Matrix
100 0.90 —— Train

. 0 o -50 Test

o 1 2 : [, 0.85 Accuracy
............................... = 0.80

0.0 2.5 5.0 7.5 10,0 125

Building and training a MultiLayer Perceptron (MLP ) Multi Class Classification Deep Learning

NN in Python using Keras wrapper on top of TensorFlow 2 DL framework backend



Architecture of the DL MLP
Python software design
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N
Components of the DL MLP Python Software

_The architecture of the DL MLP software is currently divided in four steps:

¢ GUI for a Python MLP Multi Class Classification with Keras - O X

Create a CSV file for Classification I C u rre nt
L}

LISA Low-Latency Pipelines - Deep Learning Multilayer Perceptron Python Software Design

Feature Engineering 2>
- Establishing correlations
between the specific features
Signal features to be used during training and
classifying the GW classes

CSv MLP DL NN

Assessing the prediction accuracy,

LISA simulator (LisaNode)

Incld. Noise and TDI

Processing

I

Gravitational Data time series
Waveforms: including source Reading the simulated/real

Analytic models parameters GW ‘txt’ files, and creating a . ., writing the results on the screen
and simulation ‘csv’file with featuresto be ::: é:;sz;:::;gs : or/and in files, and plotting the

databases used by the DL algorithm Loss and Accuracy Learning Curves

Training, learning,




LLMLP - Progress Review on Deep
Learning programs for classifying GW
waveforms with Python
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Data Used and Accuracy Values :
Using:

1. Full available data (generated by Traian) : 708,544 GW waveforms

= 266,544 (without noise, pure signal) + 442,000 (with noise).

Operations needed :

The Maximum Accuracy Values in 100 epochs
100 -

> Creating the CSV files (6 classes). oo I R S

» Training and classifying 80 - |
the GW waveforms. S Zg:

- [ — accuracy values g 50 - *  Maximum Accuracy Scores

=} =
o 40

for test percentage values (10% + 90 %) & -
and for 100 MLP epochs : 95.49% + 85.83% ig -
(figure 1) — for 6 classes i

0 [ | | 1 1 | | 1 1 | |
0 10 20 30 40 50 60 70 80 90 100
Testsize (%)

@ Plotting the Accuracy
’ values versus the




LLMLP - Progress Review on Deep
Learning programs for classifying GW
waveforms with Python

'] INSTITUTE or
) SPACE SCIENCE

\/ A subsidiary of INFLPR

Data Used and Accuracy Values :

Using:

1. Full available data (generated by Traian) : 708,544 GW waveforms
= 266,544 (without noise, pure signal) + 442,000 (with noise), but the noise
was subtracted to obtain a pristine signal : S = [(S+Z) — Z].

Operations needed :

» Generating the files with a pure GW signal by extracting the additive noise from
the files using the signal mixed with noise and those containing only the
generated noise. (figures 2 and 3)

» Creating the CSV files (6 classes).

» Training and classifying the GW waveforms.

- Maximum accuracy values for test percentage values (10% + 90 %) and
for 100 MLP epochs : 99.65% + 99.43% (figure 2)

- Maximum accuracy value for a single test percentage value (10%) and
1,000 MLP epochs : 99.87% ! (figure 3)




Building and training a MultiLayer
Perceptron (MLP) Multi-Class
Classification Deep Learning NN in
Python - using Keras wrapper on top of
sorFlow 2 DL framework backend

INSTITUTE or
SPACE SCIENCE

A subsidiary of INFLPR

A Python DL MLP Multi-Class Classification Code

for 708,544 simulated GW waveform

Plotting the Accuracy values versus the

The Maximum Accuracy Values in 100 epochs

100- = = x x x x =x =x x
90 -
80 -
o 70-

Maximum Accuracy Scores
- Noise Subtracted -

Accuracy (%

| NO (O8] = ol D
o (e o o o o
1 1 1 1 1 1

oL | I I | | I I | |
010 20 30 40 50 60 70 8 90 1
Fiq. 2 Testsize (%)

(0}

signals,

divided into 6 mass ratio classes,
with 90% of them used as a training

sample

l(Max. accuracy value = 99.87%)

0 0 0 0
0 0 0 0
0 1 2 3

20000

15000

0 10000

- 5000



ISS-Science Group (ISS-Sci)

= Artificial
Intelligence
Inference
Acceleration
System

Deep Learning Convolutional Neural Network for Characterization and Classification of
Gravitational Waves, inferred on Xillinx Spartan®-7 XC7S100 FPGA.



ISS-Science Group (ISS-Sci)

FPGA setup for LISA low latency implementation using Neuronal Networks.
Developed in Python and translated into C to be embedded into an FPGA.

The hardware design is developed in Verilog/VHDL. The host program is developed in Python and
it is responsible for transferring the data into the FPGA board, receiving the results and running
the prediction algorithm.

The algorithm has 4 layers: Input Layer: feeds discrete signal, Convolution Layer I: Morlet,
Shannon and B-spline frequency wavelet, Convolution Layer II: Shannon ver. 1, Shannon ver. 2
and B-spline frequency, Convolution Layer III (MLP): 2 completely connected sub-layers and one
output sub-layer.

HOST

L PLACA FPGA
initializator

| SoC

AN

Host Soft .
Python harc!ware design
Y (Verilog/VHDL)

MLP

IN OUT software

| ©

CONVOLUTIE
CONVOLUTIE
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LISA Astrophysics Working Group

Evolution of MBH populations and growth methods

0.010 . -

Distance (kpc) 0.010
0.005) -

0.000

0.000

05
Distance (kpc)

0.005
Distance (kpc) i
0.010 %000

Initial conditions for MBH populations
(green - 166375 gas particles ; blue - 2004 BHs)

Final distributions after 13 Gyrs
(green - 135661 gas particles ; blue - 9 BHs)

Merging Rates

1
IS

slope = 2.69

Log (N / yr » Mpc*3)
&

|
)

-7
6.8 7.0 7.2 74 78 7.8 8.0
Log t (year)

Merging Rates per year per cubic Mega-parsec over time

We anticipate detection values somewhere between a few
tens and little over a thousand yr .

Exotic growth method (Star Gulping)

215000 | \ \ : ( { H Fit function: y = a + b'x + c'logyy x
|

w H

e } " } In accordance to previous results

214900 | ’ (Kesden, 2012)

214850 Poses as an argument for further

. study, especially because it might

2o represent a very interesting case

214750 for the LISA Extreme Mass Ratio

0 2x107 4x107 6x107 8x107 1x10%

Inspirals (EMRIs) candidates.

t(yr)

SG rate (Number of gulped stars over time)

MBH Spin-Flip
40
Merging MBH binaries with 30
mass ratios (q) values between  ~
1/30 <q<1/3 Z20
generate a 36% chance of 10
spin-flip.

Yo 02 04 06 08 10
q

Merging rates over mass ratios
(shaded area gives the highest spin-flip probability)
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LISA Astrophysics Working Group
(continued)

Ref - LISA
Laser Interferferometer

White Paper contribution Space Antenua | Deie o175 | Fags 15T
Section 2 - “MBH origin LISA Astrophysics White Paper
and growth across the )
cosmic time” N/Ref. | LIS
& “MBH spin-flip”

Title LISA Astrophysics White Paper
Submitted for Abstract: | Hors comes the abstract

Living Reviews

LECS — LISA EARLY CAREER SCIENTISTS

Organizing Job Fairs & Workshops

Lorentz  Gravitational Wave Astrophysics
[ for Early Career Scientists

LECS Virtual Postdoc/PhD Job Fair

Co-chairing the LECS WG for a mandate

LECS chairs

, GWAECS Workshop
w'zmm ac.uk @LorentZ Center NL

Razvan Balasov rabalasov@spacescience.ro

Thomas Kupfer tk
Valeriya Korol koro

LISA Outreach Group

Posters

?j LISA-SPACE-MISSION /Iss

Institute of Space Science contributions to the LISA mission
[ISSTISASCI )

otections and sisofor  sctutions. ravitational waves,
slerting other sbservatories. eatinos, cosmic rays.

_ss LISA Comy
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-
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#Ramai curios! esa

=~

N4

LISA SPACE
MISSION




ISS-Science Group (ISS-Sci)




Quantum Neural Networks For The LISA
Space Mission

Motivation

The large amount of information which can be
manipulated and the low computational costs of
quantum computers allow us to process and analyze
fastly a great quantity of space mission data.

Data processing device

Complex data space requires a quantum leap in data

analysis

Data generating system

CQ

CC

C — classical, Q - quantum

Fractional frequency

1
—
L

|
N
L

I
w
L

|
N

le—20

L TDIY (noisy)
= TDI'Y

2.512002.512252.512502.512752.513002.513252.513502.51375
Time [s] le7

With just 275 qubits, we can represent
more states than the number of atoms in
the observable universe: 2275!

Classical
X X, X3
Wy LA We
D
hy = 6(Wyx; + Wsxy + Wexz)

Quantum l

S

|l//1> Measurement 1
—

Some specified

input state

[yr)

Measurement, 2

Classical




Quantum Neural Networks For The LISA

Space Mission

Our first results

+ We successft_JIIIy adapted two quantum neural
network tutorials

for binary classification of simulated

noiseless gravitational waveforms, with respect to

source mass ratio

* A quantum neural network can extract meaningful

information and perform classification of a dataset with

less parameters

* Adding a quantum layer to an underperforming classical
neural network leads to dramatic accuracy improvements

., — a=1000

data N”‘\/\

2 WUV

2 linear classical layers:
First one: in features = 9, out features = 16

Second one: in features = 16, out features = 1

1 quantum layer with one 1 qubit:
R, gate parameterized by 0 = out features

¥ —— g=100

I
I

I

I

|
I\
v

g

Compute the gradient with respect to 8 and optimize the linear layers weights
to find the loss function’s minimum value

v

| Measure and compute the expectation value of Sigma Z observable to classify data |

Accuracy

0.2

—— Train accuracy
—— Validation accuracy

20 40 60 80 100 120

Epoch

1

Name of the q
Testing
quantum
accuracy
computer
ibm_nairobi 53,5%
ibm_oslo 70,3%
ibmq_belem 31,7%
ibmq_manila 49,5%
ibmq_quito 71,3%
ibmq_lima 48,5%
ibmq_armon 67,3%
k

Waveform Input: ‘; of the QNN Output:
features wavelorm predictions
features
State preparation: Layers:
Ry rotations General .
parameterized by rotations Measuremen Optimization
the input and C- parameterized by ®
NOTs weights
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= Scientific output:
« Many talks and posters at LISA Symposium, LISA Conference, at
COSPAR Scientific Assembly and more

e Papers:

Simulations and analysis of the first black hole populations; Balasov, R.,
Caramete, L.; Rom. Rep. Phys. 72, 114 (2020)

Prospects for fundamental physics with LISA; Barausse, Enrico, ...,
Mircea Rusu; General Relativity and Gravitation, Volume 52, Issue
8, article id.81, 2020

Characterization of Gravitational Waves Signals Using Neural
Networks; Caramete A. et al.; to be submitted; ArXiv, 2009.06109, 2020
LLP-Deep Learning programs for classifying Gravitational
Waveforms, Felea, D. et Al.; to be submitted 2022

Study of the first populations of black holes in the context of
gravitational wave observations; Caramete, L., Balasov, R.; published
in Advances in Space Research (ASR), Volume (69) Issue1 Page438-

447 (2022)
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= Scientific output:

« Papers:

» Data analysis for gravitational waves using neural networks on
quantum computers, Maria-Catalina Isfan, Laurentiu-Ioan Caramete,
Ana Caramete, Vlad-Andrei Basceanu, Traian Popescu, accepted for
publication in Rom. Rep. Phys, 2022

» Massive black hole growth using the Star Gulping mechanism, L. I.
Caramete, R. A. Balasov, A.M. Paun, accepted for publication in Rom.
Rep. Phys, 2022

= Tabletop gravitational waves waveform simulator, Laurentiu-Ioan
Caramete, Vlad-Andrei Basceanu, Ana Caramete, Maria-Catalina Isfan,
Florentina-Crenguta Pislan, Traian Popescu, Florin-Adrian Popescu, in
prep.

= Astrophysics with the Laser Interferometer Space Antenna, Pau Amaro-
Seoane, Jeff Andrews, ... R.A. Balasov, L. Caramete, et al., accepted for
publication in Living Reviews in Relativity, 2022, arXiv:2203.06016



Thank you!




Activities and results

Our activities concentrated on the task of using the LISA data generated by the

consortium to improve our pipelines.

LISA Data Challenge 2a, Sangria:

includes two main datasets: each contains Gaussian instrumental noise and simulated
waveforms from 30 million Galactic white dwarf binaries, from 17 verification Galactic
binaries, and from merging massive black-hole binaries with parameters derived from

an astrophysical model.

LDC2a-vi1.Training dataset

The dataset includes the full specification
used to generate it: source parameters, a
description of instrumental noise with the
corresponding power spectral density,
LISA's orbit, etc. We also release noiseless
data for each type of source, for waveform
validation purposes.

LDCz2a. Blind data challenge

The dataset is blinded: the level of
instrumental noise and number of sources of
each type are not disclosed (except for the
known parameters of the verification
binaries).



X-TDI strain

Activities and results
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LDCz2a-v1.Training dataset, LISA collaboration, https://lisa-ldc.lal.in2p3.fr/challenge2




Activities and results

Open Pandora’s box

LDC2a. Blind data challenge, LISA collaboration, https://lisa-ldc.lal.in2p3.fr/challenge2



Activities and results

Direct Training

Use the training data set provided by the
LISA consortium to train the NN and then
apply the network to the blind data set and
try to find the waveforms and characterize
them.

The training set must be sliced in suitable
bunch of data and prepared before use. The
blind data set must also be sliced with a
moving search window.

Pros: it has all the characteristics of LISA
data generated by the consortium.

Cons: it is limited to the few waveforms
provided by the consortium.

External training

Use the in-house generated waveforms and
the noise provided by the LISA consortium
to train the NN and then to apply the
network to the blind data set and try to find
the waveforms and characterize them.

The training set is used to validate the NN
and then the blind set is analysed to
complete the challenge. Both searches use a
moving window.

Pros: it can find and characterize a large
interval of waveforms.

Cons: the waveform data base has to be
constantly checked and improved with the
new input from the collaboration.



