
LISA Mission: General Presentation and 
Romanian Contributions

Institute of Space Science (ISS) in Bucharest-Magurele, Romania

www.spacescience.ro

https://www.elisascience.org/



LISA Mission

• The LISA (Laser Interferometer Space Antenna) mission 
will be one of the first space-based gravitational wave observatories. 

• The observatory will consist of three satellites connected via laser signals 
and will be capable of in-depth studies related to various physics 
phenomena (from black hole formation to the expansion rate of the 
Universe).

• Most importantly, LISA, with the 
help of gravitational waves, 
will “listen” to different evolution 
stages of the Universe.

Scan me for a 
LISA movie!



• 1657 members;  ~ 353 groups and departments
• 16 countries with direct contributions:
• +10 associate countries:

• Institute of Space 
Science (ISS)
contributes with
19 full members
on 3 directions 

LISA Members



LISA Management



LISA Management



LISA Management
• Management Structure for PHASE B1



Join LISA

https://signup.lisamission.org/signup



§ Low-Latency Pipelines will be responsible for delivering the fastest responses related to 
gravitational wave detections and also for alerting other observatories  (anticipating 
electromagnetic follow-ups).

§ Data analysis using neuronal networks running on CPUs but also on space qualified FPGA 
and quantum computers

§ Waveform analysis: we will provide wave- form simulation software and also a data-base for 
multiple type waveform solutions.

§ Source catalogs: Catalogs of GW sources, their masses and also predictions for merger rates.
§ Multimessenger science: Complex analysis of astrophysical sources using several 

messenger's, photons, gravitational waves, neutrinos, cosmic rays

ISS-Science Group (ISS-Sci)

Waveform analysis Source catalogs Multimessenger science



ISS-Computing Group (ISS-Comp)
ISS will design and build a dedicated computing centre (DCC) that will perform data
analysis, simulations and provide data storage for the LISA Collaboration.

First server already acquired and integrated, OS installed and used for prototyping: Server
AMD single socket A+ Server, Nvidia Tesla T4, more to follow.



ISS-Hardware Group (ISS HW)

ISS committed to participate in the development of a precise positioning system for the
three satellites – the CAS system (Constellation Acquisition Sensor), an essential
component for correct observations. The positioning will be done with a laser system, each
satellite sending a laser beam to each other. The received signal will determine the
reorientation of the satellites in the right position.

Schematics of the LISA satellite (left) and the placement of the test masses
and the optical bench (Schleicher, A., et al., In-Orbit Performance of the LISA Pathfinder
Drag Free and Attitude Control System, Proceedings of the 10th International ESA Conference on
Guidance Navigation & Control Systems, 29 May – 2 June 2017, Salzburg, Austria, 2017).

Schematics of the CAS system 



LISA Management
• Management Structure for PHASE B1



ISS-Science Group (ISS-Sci): Low-latency pipelines
• We need the capability to rapidly identify source candidates in the instrument data so that 

alerts can be sent out to partners for follow-up observations. 

• A mechanism must be in place to trigger protected observing periods in advance, to 
ensure the existence of good quality data for the science analysis. 

• Understanding the performance of the instrument in real time is also important, so that 
the general quality of data can be checked and any problems on the satellite identified 
quickly. 

• The tools in this work package are designed to generate and distribute alerts by 
monitoring the LISA data in real time, as well as monitoring the instantaneous data 
quality from the instrument.WP Description Priority
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Create low latency pipeline to run on `realistic' data
Alert generation for EM observatories
Trigger generation from GW signals
Generation of data quality metrics and flags
Source-based observatory diagnostics
Search and classification of unmodelled signals
Assessment and triggering of protected periods

3
3
2
2
2
2
1

1: end of phase A; 2: demonstration of capabilities at TRL6; 3: development of sci ops



Low-latency pipelines

4.1 Create low latency pipeline to run on `realistic' data

The LISA instrument will produce an evolving data set, and the data analysis will likewise need 
to produce an evolving set for the many signals in the data. The goal is to build, run and test 
several different pipelines in order to explore as many options as possible.
Working steps Deliverables
• Combine pipelines for different sources

• Test the performance of the pipeline on the 
realistic data in the presence of realistic noise

• Test alert generation 

• Low-latency noise characterisation and diagnostic 
of the observatory

• Pipeline for source identification. Initial solution 
for the global fit

• Refined localization of black hole mergers

• Rapid identification of transient signals

• Continuous updates on the noise characterisation

Timeframe and human resources 
requirements

List of projects

• End of Phase A: requirements document and 
preliminary versions of pipeline components

• Mission adoption: working version of the pipeline

• Closed to the launch of the mission: Fully 
functional pipeline

• Noise characterisation in the presence of signals

• Prototype the pipeline



Low-latency pipelines

4.2 Alert generation for EM observatories

To maximize collaboration with the wider astronomy community new and updated LISA 
sources must be rapidly and predictably communicated with EM observers. Low-latency 
source characterization and localization tools to get EM observers on source with minimal 
delay are of paramount importance.
Working steps Deliverables

• Collect all relevant details of the experiments, by 
elaborating a database of experiments

• Providing procedures to generate alerts and distribute 
them to the observatories

• Study the alert stages

• Veto procedure(s) and procedures for calculate/estimate 
the false alarm rate.

• Develop a phone application based on the state-of-the-art 
smart technologies that can take alerts from the Cloud.

• Database of potential follow-up experiments and their 
classification

• Framework for the alert generation for the observatories

• Procedure to generate alerts;

• Studies related to the role, description, content, 
classification and the stages/lifetime of alerts

• Requirements document and software for alert generation 
for EM observatories.

Possible subpackages List of projects

• Collecting and maintaining the database of relevant EM 
observatories

• Tools for alert distribution

• Database of potential follow-up experiments and their 
classification based on the time lapse for their signal to 
pick up

• Web and phone app for the alert generation



Low-latency pipelines

4.3 Trigger generation from GW signals

We will need to develop data analysis tools, which can perform fast parameter estimation of 
the gravitational wave signals. Especially important are sky localisation and time of 
coalescence for MBHBs.
Working steps Deliverables
• Develop the tool for the rapid parameter 

estimation for the MBHBs, especially concerning 
the sky localisation

• Tools for low-latency updates to MBHB source 
localization in the late stages of the merge

• Tools for rapid LISA source localization software 
for short-lived transients. The procedure might be 
different from the long lived MBHBs

• Algorithms and implementations for rapid LISA 
source localization software for short-lived 
transients

• Tools for fast parameter estimation

• Tools for low-latency updates to MBHB source 
localization in the late stages of the merger

• Scientific publications describing the method

Dependencies Possible subpackages

• This is the critical deliverable for the 
multimessenger follow-ups and setting of the 
protected periods

• Requires fast waveforms

• Requires accurate current noise estimates

• Fast waveform database

• Tools for rapid LISA source localization software 
for short-lived transients

• Tools for low-latency updates to MBHB source 
localization in the late stages of the merger



Low-latency pipelines

4.4 Generation of data quality metrics and flags

For the different levels of data quality we will need to identify data quality flags. Data quality 

flags will be used to provide an indication as to the quality of the data for speciffc periods of 
time, and to explain what are the problems.
Working steps Deliverables
• Develop the tool for the rapid parameter 

estimation for the MBHBs, especially concerning 
the sky localisation

• Tools for low-latency updates to MBHB source 
localization in the late stages of the merge

• Tools for rapid LISA source localization software 
for short-lived transients. The procedure might be 
different from the long lived MBHBs

• Procedure to estimate instrument's noise;

• Catalog of the noise sources (transient and 
continuous);

• A record of the data quality as a function of time;

• Data quality flags describing the severity of noise 
problems;

• A daily page containing data quality indicators

Timeframe and human resources 
requirements

Possible subpackages

• Many data quality metrics will likely not converge 
until the completion of the assembly, integration, 
verification and testing phase of the satellites.

• Estimates of noise power spectral densities;

• Glitches in TDI channel and appropriate auxiliary 
channels: a low latency pipeline to identify 
correlations.



Low-latency pipelines

4.5 Source-based observatory diagnostics

General idea is to use verification binaries (VB) as a tool understand the instrument.

Working steps Deliverables
• The objective is to determine how verification 

binaries be used to improve upon the TDI ranging 
that uses pseudo random noise (PRN) modelling, 
how do the (expected) presence and absence of 
these binaries in various TDI observables 
complement the PRN-based TDI ranging 

• Also, how can VBs be used to validate the 
calibration of the amplitude and phase of the 
signals from LISA

• Pipeline that uses VBs as prior in an optimal 
estimation method to determine whether adding 
information from the VBs' signals changes TDI 
ranging

• Pipeline for amplitude and phase calibration for a 
strain and uncertainty of the VB

Dependencies List of projects

• WP 1.4 Provide GB waveforms • As a first study to do is to look at what ranging 
errors can be derived from VBs alone;

• Then try to combine PRN and VBs;

• Determine if VBs can be used to calibrate the 
amplitude and phase of the signal.



Low-latency pipelines

4.6 Search and classification of unmodelled signals

The past research has shown that new unexpected sources are revealed whenever a new 
detection/observation capability becomes available. Therefore, it is very important to have 
methods to detect gravitational waves from unmodelled sources.
Working steps Deliverables
• Developing techniques that can distinguish 

unmodelled GW signals from instrumental 
artifacts

• Developing techniques to characterize 
unmodelled GW signals

• Developing the necessary LLP software to extract 
transients

• Concurrently using of multiple methods to 
enhance the unmodelled GW transients detection.

• Phenomenological models for the unmodelled 
GW transients and methods to characterize them

• Algorithms that can be used to extract 
unmodelled GW signals

• Software implementation of the algorithms to 
extract unmodelled GW signals, which will run as 
part of the low-latency pipeline

• Databases with identified unmodelled GW signals

Timeframe and human resources 
requirements

List of projects

• This is largely uncharted territory. Good to 
explore multiple approaches over the next several 
years.

• Study the coherent WaveBurst (cWB) algorithm 
which has been applied to LIGO / Virgo for using 
in the case of LISA



Low-latency pipelines

4.7 Assessment and triggering of protected periods

The goal here is to identify the mechanisms and decisions involved in triggering a protected 
period on the observatory. We also need to look at the constraints coming from the operations 
and the instrument itself.
Working steps Deliverables
• We have to identify the routine which will 

combine the information on the scheduled 
antenna repointing with the triggers of the 
coalescence time from the MBHBs and ensure 
that LISA is operational during the merger and 
ringdown

• Moreover we need to ensure that routine 
interruptions are scheduled in such a way as to 
allow them to be rescheduled to avoid the 
protected period

• Technical note, which identifies the loss of science 
due to the gap in data close to the merger of 
MBHB

• Procedure that monitors: the schedule of the 
antenna repointing; triggers of the MBHB events 
and based on this information defines protected 
periods within the allowed range

• Tools to communicate protected periods to 
SOC/MOC

Timeframe and human resources 
requirements

List of projects

• The limitations on how much in advance we can 
trigger the protected periods and what does it 
imply for the detection, parameter estimation and 
multimessenger observations have to be 
identified by the end of Phase A.

• Routine to combine predictions for the 
coalescence time and ringdown length with the 
schedule restrictions in order to find the optimal 
adjustment scheme.



ISS-Science Group (ISS-Sci): Low-latency pipelines

Using AI 
techniques, the 
pipeline will detect 
and characterize 
GW events and 
deliver alerts 
related to 
gravitational wave 
detections to other 
observatories.



ISS-Science Group (ISS-Sci)



ISS-Science Group (ISS-Sci)

Quick Gravitational Wave Data Generation 

This code is a basic computer implementation of the quadrupole formalism of general relativity applied to point-
mass binary systems in circular orbits. 

Besides gravitational waveforms, the code also computes the parameter-dependent time-evolution of the main 
physical quantities in the quadrupole formalism (orbital separation, gravitational waves frequency, amplitude 
and phase). 

The code was written with the aim to 
efficiently generate large amounts of 
parameter-dependent gravitational 
waveform time-series used for the incipient 
development of neural networks dedicated 
to the detection and classification of 
gravitational waves.

The variable source parameters considered 
are the binary mass ratio, orbital 
inclination, distance to source and antenna 
pattern coefficients. The generated 
gravitational waveforms are either "clean" 
or distorted with adjustable additive 
random noise.   

(https://www.mathworks.com/matlabcentral/fileexchange/)



Interpretation of gravitational wave signals based on the parameters of the 
sources

*representations realized based on the LIGO/VIRGO collaboration data as a study 
model, using the LIGO/VIRGO analysis tools

Such parameters are the masses (a) and the spins (b)  of 
the sources:

(a)
(b)

When it comes to the Gravitational Wave (GW) sources, Massive 
and Supermassive Black Hole Binaries (MBHB) present certain 
parameters with great effect on the aspect of the waveform. Thus, 
by analyzing the shape of the signal, we can determine the type of 
event that causes the space-time ripples and vice-versa. We are of 
course interested in the LISA frequency range, but the 
LIGO/VIRGO data is a great way to practice and validate the 
algorithm.



ISS-Science Group (ISS-Sci)

⟹ With the LDC tools (LISA constants, LISA instrument, LISA GW response), we can 
simulate our own waveforms in the LISA frequency range in order to train neural 

networks meant to differentiate GWs produced by MBHB sources 

Simulations realized with the LDC tools in order 
to emphasize the effect of the mass ratio (a), the 

signal-to-noise ratio  (b) and the moment of 
coalescence (c) upon the waveform of a GW 

(a)

(b)
(a)

(c)



ISS-Science Group (ISS-Sci)

Previous activities:
• A software platform and a database containing present and future experiments capable to detect EM and 

non-photonic (e.g., cosmic rays, neutrino, etc.) GW counterpart signals. The source parameters inferred 
from the GW event (Low Latency Pipeline) are to be used by the LISA alerting system

• A software platform and a database which can accommodate with simulated GW waveforms from 
different types of sources, aimed to support rapid data analysis procedures required by the LLP to decide 
on setting the instrument in a protected state and/or alerting potential observers of the astronomical 
counterpart signals

Current activities:
Developing of a CNN in order to detect a GW signal from EMRI, implying a number of steps, like:
• Installing and configuring the appropriate software frameworks to: Simulate EMWI waveforms using 

both analytical (very fast but missing some waveform details) and numerically (accurate but at least one 
order of magnitude slower); Simulate Galactic Binaries stochastic signal, this being the most important 
noise that poses major problems in the analysis of the gravitational signal of interest; Generate the LISA 
response to the detected gravitational wave (it depends on the orbit and the orientation of the satellites 
constellation relative to the GW source)

• Conducting a number of studies to determine the optimal NN configuration and the optimal form of the 
input data (data series, spectra, spectrograms). The spectrogram seems to be the best choice since it 
reconcile the other two options: the time series which contains all the information but is a very big data 
and the spectrum which is much more smaller data but are missing the time information

• Developing a CNN to analyse the GW spectrograms, the purpose being to detect the presence of an 
EMRI regardless of the time series content (such as the simultaneous presence of other GW signals from 
GB, MBHB, SMBHB)



ISS-Science Group (ISS-Sci)

Some aspects regarding the detection of EMRI signals by LISA:

A SMBH with 10!𝑀° will capture un CO end may generate an EMRI GW signal once in 10! ÷ 10# years

LISA can detect such signals from cosmological distances; some studies (Babak et al. , Phys. Rev. D 95, 2017)
suggest that in one year, LISA will detect from few to few thousand EMRI signals

The study of the EMRI events detected by LISA will contribute to the testing of GR in strong field regime,
permitting the direct study of the geometry of the Black Holes (Kerr or Schwartzchild metrics).

llustration of an EMRI orbit in Kerr spacetime, appropriate for a short 
portion of an EMRI around a
spinning MBH. The central black hole has a mass 𝑀 = 10!𝑀° and a 
dimensionless spin of 0.9. Distances
are measured in units of the gravitational radius 𝑟$ = 𝐺𝑀/𝑐% . The 
innermost stable circular orbit for this
MBH would be at 𝑟 ≅ 2.3𝑟$ r . The coordinates have been mapped into 
Euclidean space to visualise the orbit.

Credit:
https://arxiv.org/pdf/1903.03686.pdf

https://arxiv.org/pdf/1903.03686.pdf


ISS-Science Group (ISS-Sci)

The “plus” (orange) and “cross” (blue) components of the GW 
from an EMRI, in 3 days (left), 1 month (central) and 2 years 
(right).  

The data were obtained with the FEW software 
(FastEMRIWaveforms), with the following source parameters:
M = 1e6 (Mass of MBH in MSun); m = 1e2 (Mass of CO in 
MSun); a = 0.2 (MBH spin);
p0 = 14.0 (Initial semi-latus rectum); e0 = 0.6 (initial 
eccentricity; dist = 1.0 (distance in Gpc)



ISS-Science Group (ISS-Sci)

§ Low-Latency Bi-LSTM Neural Network Classifier (LL-BiLSTM) implementat in Matlab

§ Deep Learning programs for classifying GW waveforms with Python (DL MLP)

Multiple waveform classes with and 
without noise

The algorithm 
works good for any 
number of classes 
and it’s a viable 
candidate classifier



ISS-Science Group (ISS-Sci)

• Deep Learning programs for classifying GW waveforms with Python (DL 
MLP)

The Loss Learning Curves 
(LLCs) and the Accuracy 
Learning Curves (ALCs)



Activities and results

Diagram of the LL-BiLSTM application

Identification and classification of a gravitational wave signal from a 
batch of data (noise and hidden signal).

NN: trained with gravitational wave signals and noise data files (16, 
000 gravitational waveforms (“clean” and “noisy”) and 4000 noise 
data files).

Environment: Matlab Categories: five (A, B, C, D, N)

Training accuracy: 98.71 Training time: ~308 minutes

Testing accuracy: 98.55% Testing time: < 1 minute

Input data: one 
month of GW 

waveforms



A Deep Learning Toolkit for 
Gravitational Waves Analysis (GWEEP)



Deep Learning Models
1. DL-LL MLP Architecture

Input Layer:
• Input Shape = 9

Dense Hidden Layer #1:
• Neurons = 64
• Activation = 

ReLU

Dense Hidden Layer #2:
• Neurons = 128
• Activation = 

ReLU

Dense Hidden Layer #3:
• Neurons = 256
• Activation = ReLU

Deep Learning-Low 
Latency Multilayer 

Perceptron

Dense Hidden Layer #4:
• Neurons = 512
• Activation = ReLU

Dense Hidden Layer #5:
• Neurons = 1024
• Activation = ReLU

Dense Layer #6:
• Neurons = 2048
• Activation = ReLUDense Output Layer:

• Neurons = 5
• Activation = 

Softmax

Deep Learning Models
2. DL-LL CNN Architecture

#1 Convolutional Hidden Layer:
• Filters = 64
• Kernels = 3
• Activation = ReLU

#2 Convolutional Hidden Layer:
• Filters = 128
• Kernels = 3
• Activation = ReLU

Flatten Layer 3x Dense Layers:
• Hidden Layer #1:

• Neurons = 64
• Activation = ReLU

• Hidden Layer #2:
• Neurons = 128
• Activation = ReLU

• Hidden Layer #3:
• Neurons = 256
• Activation = ReLU

Dense Output Layer:
• Neurons = 5
• Activation = 

Softmax

Deep Learning-
Low Latency 

Convolutional 
Neural Network

Input Layer:
• Input Shape = (9, 1)

#3 Convolutional Hidden Layer:
• Filters = 256
• Kernels = 3
• Activation = ReLU

#4 Convolutional Hidden Layer:
• Filters = 512
• Kernels = 3
• Activation = ReLU



https://www.jwst.nasa.gov/content/about/comparisonWebbVsHubble.html

Training & Validation:

◦ Training Acc. = 99.78%

◦ Validation Acc. = 99.71%

◦ Training loss = 7.2 ∙ 10-3

◦ Validation loss = 8.9 ∙ 10-3

◦ Training time= 57 min 29.51 sec

Inference:

◦ Inference Acc. = 83.76%

◦ Inference time = 2 min 25.77 sec

Inference DL-LL MLP
Inference Confusion Matrix

https://www.jwst.nasa.gov/content/about/comparisonWebbVsHubble.html

Training & validation:

◦ Training Acc. = 99.62 %

◦ Validation Acc. = 99.15 %

◦ Training loss = 1.12 ∙ 10-2

◦ Validation loss = 3.71 ∙ 10-2

◦ Training time = 87 min 10.15 sec

Inference:

◦ Inference Acc. = 96.16 %

◦ Inference time = 2 min 45.92 sec

Inference DL-LL CNN
Inference Confusion Matrix



Activities and results

Building and training a MultiLayer Perceptron (MLP ) Multi Class Classification Deep Learning

NN in Python using Keras wrapper on top of TensorFlow 2 DL framework backend

Sample of Data Used, Gravitational waves waveforms with and without noise 
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The architecture of the DL MLP software is currently divided in  four steps:

Architecture of  the DL MLP 
Python software design

MLP DL NN

FC

CSV

Current 
version
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Using:

1. Full available data (generated by Traian) : 708,544 GW waveforms
= 266,544 (without noise, pure signal) + 442,000 (with noise).

Operations needed :

Ø Creating the CSV files (6 classes).
Ø Training and classifying
the GW waveforms.

- Maximum accuracy values
for test percentage values (10% ÷ 90 %)
and for 100 MLP epochs : 95.49% ÷ 85.83%
(figure 1) – for 6 classes

LLMLP – Progress Review on Deep 
Learning programs for classifying GW 

waveforms with Python

Plotting the Accuracy 
values versus the 

Testsize used
Fig. 

1
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Using:
1. Full available data (generated by Traian) : 708,544 GW waveforms

= 266,544 (without noise, pure signal) + 442,000 (with noise), but the noise
was subtracted to obtain a pristine signal : S = [(S+Z) – Z].

Operations needed :
Ø Generating the files with a pure GW signal by extracting the additive noise from

the files using the signal mixed with noise and those containing only the
generated noise. (figures 2 and 3)

Ø Creating the CSV files (6 classes).
Ø Training and classifying the GW waveforms.

- Maximum accuracy values for test percentage values (10% ÷ 90 %) and
for 100 MLP epochs : 99.65% ÷ 99.43% (figure 2)

- Maximum accuracy value for a single test percentage value (10%) and
1,000 MLP epochs : 99.87% ! (figure 3)

LLMLP – Progress Review on Deep 
Learning programs for classifying GW 

waveforms with Python
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Building and training a MultiLayer
Perceptron (MLP) Multi-Class 

Classification Deep Learning NN in 
Python - using Keras wrapper on top of 
TensorFlow 2 DL framework backend

Plotting the Accuracy values versus the 
Testsize used

Fig. 2 Fig. 3

for 708,544 simulated GW waveform 
signals,

divided into 6 mass ratio classes,
with 90% of them used as a training 

sample
(Max. accuracy value = 99.87%)



ISS-Science Group (ISS-Sci)

§ Artificial 
Intelligence 
Inference 
Acceleration 
System

Deep Learning Convolutional Neural Network for Characterization and Classification of 
Gravitational Waves, inferred on Xillinx Spartan®-7 XC7S100 FPGA.



ISS-Science Group (ISS-Sci)

• FPGA setup for LISA low latency implementation using Neuronal Networks.

• Developed in Python and translated into C to be embedded into an FPGA. 

• The hardware design is  developed in Verilog/VHDL. The host program is developed in Python and 
it is responsible for transferring the data into the FPGA board, receiving the results and running 
the prediction algorithm. 

• The algorithm has 4 layers: Input Layer: feeds discrete signal, Convolution Layer I: Morlet, 
Shannon and B-spline frequency wavelet, Convolution Layer II: Shannon ver. 1, Shannon ver. 2 
and B-spline frequency, Convolution Layer III (MLP): 2 completely connected sub-layers and one 
output sub-layer.



ISS-Science Group (ISS-Sci)



ISS-Science Group (ISS-Sci)



ISS-Science Group (ISS-Sci)



Quantum Neural Networks For The LISA
Space Mission

Motivation
• The large amount of information which can be 

manipulated and the low computational costs of 
quantum computers allow us to process and analyze 
fastly a great quantity of space mission data. 

• Complex data space requires a quantum leap in data 
analysis 

With just 275 qubits, we can represent 
more states than the number of atoms in 

the observable universe: 2275!



Quantum Neural Networks For The LISA
Space Mission

Our first results
• We successfully adapted two quantum neural 

network tutorials for binary classification of simulated 
noiseless gravitational waveforms, with respect to 
source mass ratio

• A quantum neural network can extract meaningful 
information and perform classification of a dataset with 
less parameters

• Adding a quantum layer to an underperforming classical 
neural network leads to dramatic accuracy improvements

Waveform
features

Input: 4 of the 
waveform 
features

QNN
with 2 
qubits

Output: 
predictions

State preparation:
RY rotations 

parameterized by 
the input and C-

NOTs

Layers:
General 

rotations 
parameterized by 

weights

Measuremen
ts

Optimization

Name of the 
quantum 
computer

Testing 
accuracy

ibm_nairobi 53,5%

ibm_oslo 70,3%

ibmq_belem 31,7%

ibmq_manila 49,5%

ibmq_quito 71,3%

ibmq_lima 48,5%

ibmq_armon
k

67,3%data

2 linear classical layers:
First one: in features = 9, out features = 16

Second one: in features = 16, out features = 1

1 quantum layer with one 1 qubit:
Ry gate parameterized by θ = out features

Compute the gradient with respect to θ and optimize the linear layers weights 
to find the loss function’s minimum value

Measure and compute the expectation value of Sigma Z observable to classify data



ISS-Science Group (ISS-Sci)

§ Scientific output: 
• Many talks and posters at LISA Symposium, LISA Conference, at  

COSPAR Scientific Assembly and more
• Papers:

§ Simulations and analysis of the first black hole populations; Balasov, R., 
Caramete, L.; Rom. Rep. Phys. 72, 114 (2020)

§ Prospects for fundamental physics with LISA; Barausse, Enrico, ..., 
Mircea Rusu; General Relativity and Gravitation, Volume 52, Issue 
8, article id.81, 2020

§ Characterization of Gravitational Waves Signals Using Neural 
Networks; Caramete A. et al.; to be submitted; ArXiv, 2009.06109, 2020

§ LLP-Deep Learning programs for classifying Gravitational 
Waveforms, Felea, D. et Al.; to be submitted 2022

§ Study of the first populations of black holes in the context of 
gravitational wave observations; Caramete, L., Balasov, R.; published 
in Advances in Space Research (ASR), Volume (69) Issue1 Page438-
447 (2022)



ISS-Science Group (ISS-Sci)

§ Scientific output: 

• Papers:
§ Data analysis for gravitational waves using neural networks on 

quantum computers, Maria-Catalina Isfan, Laurentiu-Ioan Caramete, 
Ana Caramete, Vlad-Andrei Basceanu, Traian Popescu, accepted for 
publication in Rom. Rep. Phys, 2022

§ Massive black hole growth using the Star Gulping mechanism, L. I. 
Caramete, R. A. Balasov, A.M. Paun, accepted for publication in Rom. 
Rep. Phys, 2022

§ Tabletop gravitational waves waveform simulator, Laurentiu-Ioan
Caramete, Vlad-Andrei Basceanu, Ana Caramete, Maria-Catalina Isfan, 
Florentina-Crenguta Pislan, Traian Popescu, Florin-Adrian Popescu, in 
prep.

§ Astrophysics with the Laser Interferometer Space Antenna, Pau Amaro-
Seoane, Jeff Andrews, ... R.A. Balasov, L. Caramete, et al., accepted for 
publication in Living Reviews in Relativity, 2022, arXiv:2203.06016



Thank you! 



Activities and results

Our activities concentrated on the task of using the LISA data generated by the
consortium to improve our pipelines.

LISA Data Challenge 2a, Sangria:

includes two main datasets: each contains Gaussian instrumental noise and simulated
waveforms from 30 million Galactic white dwarf binaries, from 17 verification Galactic
binaries, and from merging massive black-hole binaries with parameters derived from
an astrophysical model.

LDC2a-v1.Training dataset

The dataset includes the full specification
used to generate it: source parameters, a
description of instrumental noise with the
corresponding power spectral density,
LISA's orbit, etc. We also release noiseless
data for each type of source, for waveform
validation purposes.

LDC2a. Blind data challenge

The dataset is blinded: the level of
instrumental noise and number of sources of
each type are not disclosed (except for the
known parameters of the verification
binaries).
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LDC2a-v1.Training dataset, LISA collaboration, https://lisa-ldc.lal.in2p3.fr/challenge2



Activities and results

LDC2a. Blind data challenge, LISA collaboration, https://lisa-ldc.lal.in2p3.fr/challenge2



Activities and results

Direct Training

Use the training data set provided by the
LISA consortium to train the NN and then
apply the network to the blind data set and
try to find the waveforms and characterize
them.

The training set must be sliced in suitable
bunch of data and prepared before use. The
blind data set must also be sliced with a
moving search window.

Pros: it has all the characteristics of LISA
data generated by the consortium.

Cons: it is limited to the few waveforms
provided by the consortium.

External training

Use the in-house generated waveforms and
the noise provided by the LISA consortium
to train the NN and then to apply the
network to the blind data set and try to find
the waveforms and characterize them.

The training set is used to validate the NN
and then the blind set is analysed to
complete the challenge. Both searches use a
moving window.

Pros: it can find and characterize a large
interval of waveforms.

Cons: the waveform data base has to be
constantly checked and improved with the
new input from the collaboration.


