Cromosfera solară dezvăluită prin spectroscopie

Contraction of the second

Daniela Lăcătuş

Seminarul Științific al Institutului Astronomic Român 10 Martie 2021

NCAR is sponsored by National Science Foundation

D. A. Lacatus

Cromosfera solară dezvăluită prin spectroscopie

Outline

Outline

Introducere

- Cromosfera solară
- Spectrul solar
- Emisia ionului Mg II

Metodologie

Calm solar

Cromosfera solară

Cromosfera solară

Cromosfera solară

Spectrul Solar

Spectrul Solar

Spectrul Solar

Outline

Introducere

Metodologie

- Intensitate absolută
- Momentele profilului
- Caracteristicile profilului

Calm solar

Intensitate absolută

Level 2 data product \Rightarrow calibrare lungime undă $\Rightarrow N(\lambda, t)$ în DN $\Rightarrow I(\lambda, t)$ în $erg \cdot s^{-1} \cdot cm^{-2} \cdot sr^{-1} \cdot Å^{-1}$ folosind Liu et al. (2015)

$$I(\lambda, t) = \frac{N(\lambda, t) \cdot Q(\lambda) \cdot E(\lambda)}{t_{\exp} \cdot \Delta \lambda \cdot A_{\text{eff}} \cdot \Omega}$$

unde,

- $\cdots N(\lambda, t)$ intensitatea observată
- ··· $Q(\lambda)$ caracteristici instrumentale: 18 fotoni ·DN⁻¹ pentru regiunea spectrală (De Pontieu et al., 2014)
- $\cdots E(\lambda) = h \cdot c/\lambda$ energia fotonului
- $\cdots t_{exp}$ timp expunere
- $\cdots \Delta \lambda$ rezoluție spectrală,
- \cdots A_{eff} aria efectivă (*iris_get_response.pro*)
- $\cdots \ \Omega$ unghi solid

Momentele profilului

Intensitate integrată:

$$I_{\rm core} = \int I(\lambda) d\lambda$$

Effectul Doppler:

$$\Delta \lambda = \frac{\int \lambda I(\lambda) d\lambda}{\int I(\lambda) d\lambda} - \lambda_0$$

 \Rightarrow Viteză Doppler:

$$\Delta v = \frac{\Delta \lambda}{\lambda_0} \cdot c$$

Dispersia lungimilor de undă:

$$\sigma = \sqrt{\frac{\int (\lambda - \lambda_0)^2 I(\lambda, t) d\lambda}{\int I(\lambda, t) d\lambda}}$$

Caracteristicile profilului

Outline

Introducere.

Metodologie

Calm solar

- Seturi
- Analiză
- Rezultate statistice
- Proiect curent

Calm solar

Seturi analizate

Momentele profilului

Caracteristicile profilului: Intensitate

Caracteristicile profilului: Relații

Set	Activity	Intensity (10 ⁵)		Doppler Shift	Line Width	Magnetic field
	Level	[erg	cm ⁻² s ⁻¹ sr ⁻¹]	[km/s]	[mÅ]	[G]
	Inter		0.62 ± 0.21	-0.97 ± 3.58	345 ± 42	1.07 ± 7.37
QQS	Net	1.50 ± 0.64		0.05 ± 2.51	407 ± 65	2.21 ± 13.40
	E Net	2.68 ± 1.03		0.13 ± 2.65	454 ± 54	15.07 ± 27.02
	Inter	0.47 ± 0.17		-0.11 ± 2.32	312 ± 37	-0.02 ± 7.07
ARQS	Net	1.64 ± 0.61		-0.06 ± 2.34	426 ± 54	-2.54 ± 18.86
	E Net	3.09 ± 0.94		0.46 ± 2.31	495 ± 52	-17.75 ± 29.74
CHQS1	Inter	0.84 ± 0.27		0.64 ± 3.28	342 ± 70	-0.35 ± 5.94
	Net	1.73 ± 0.48		0.47 ± 2.53	446 ± 50	5.68 ± 9.62
	E Net	4.12 ± 1.13		0.17 ± 2.63	554 ± 48	195.04 ± 198.3
CHQS2	Inter	0.73 ± 0.28		-0.21 ± 3.74	398 ± 60	-1.06 ± 8.46
	Net	1.08 ± 0.50		-0.63 ± 4.07	441 ± 70	-10.45 ± 26.50
	E Net		2.61 ± 1.21	0.80 ± 3.50	507 ± 51	-31.64 ± 60.06
=	0	1.11.11	9	D 1	P 1	<u> </u>
	Set	Activity	Core	Peak	Peak	k:h
		Level	Depths	Dominance	Separation	Ratio
_		T .	0.52 0.12	0.07 0.14	mA	1.12 0.00
	0.00	Inter	0.53 ± 0.12	0.07 ± 0.14	$2/1 \pm 38$	1.12 ± 0.08
	QQS	Net	0.52 ± 0.12	0.04 ± 0.12	302 ± 56	1.19 ± 0.07
		E Net	0.33 ± 0.15	0.06 ± 0.16	323 ± 79	1.27 ± 0.05
	1 DOG	Inter	0.42 ± 0.12	0.04 ± 0.09	226 ± 31	1.08 ± 0.06
	ARQS	Net	0.70 ± 0.09	0.05 ± 0.12	317 ± 38	1.20 ± 0.05
_		E Net	0.36 ± 0.14	0.05 ± 0.13	$\frac{355 \pm 75}{200 \pm 46}$	1.30 ± 0.05
	arroa.	Inter	0.52 ± 0.12	0.09 ± 0.16	309 ± 46	-
	CHQSI	Net	0.46 ± 0.11	0.05 ± 0.15	350 ± 53	-
		E Net	0.38 ± 0.16	0.04 ± 0.18	332 ± 81	-
		Inter	0.43 ± 0.12	0.05 ± 0.17	309 ± 50	1.14 ± 0.08
	CHQS2	Net	0.47 ± 0.14	0.08 ± 0.19	358 ± 78	1.17 ± 0.05
_		E Net	0.41 ± 0.16	0.02 ± 0.19	389 ± 86	1.27 ± 0.05

Fit parameters for the Mg II lines characteristics in the datasets, for different activity levels.

Proiect în desfășurare

Proiect în desfășurare

Outline

Metodologie

Introduce

Calm solar

Erupții

4

- Model teoretic
- Exemplu
- Efecte spectrale
- Ploaie coronală
- Analiză

Model Erupție

Cartoon model based on Yokoyama & Shibata (1998)

March 11, 2015 X2.1

Position of the soft (red) and hard (blue) X-ray kernels with respect to the IRIS SG slit positions (black vertical lines). The background (red) is SDO/AIA 304 emission and the foreground (green) is IRIS/SJI 1330 Å.

Emisia Mg II k&h

Date observaționale

Date observaționale

Date observaționale

Elemente distinctive

Observed frequency-integrated intensity (erg $cm^{-2} s^{-1} sr^{-1}$)									
Multiplet	Mg II	Mg II	C II	Si IV					
	3p - 3s	3d - 3p	1334 + 1335	1403					
Phase		-							
QS	5.36×10^{5}		6070	572					
Pre-flare	1.83×10^{6}		5.16×10^{4}	2840					
Impulse	4.36×10^{7}	$\approx 1.36 \times 10^7$	1.73×10^{7}	$> 3.86 \times 10^{6}$					
Relax	2.77×10^{7}	4.81×10^{6}	4.39×10^{6}	3.51×10^{5}					
Post-flare	1.82×10^7	$\approx 4.51 \times 10^5$	1.45×10^6	$2.04\times\mathbf{10^5}$					

- ··· Sudden onset 6 min after flare.
- ··· Region 20 pixels across (6") or 4-5 Mm.
- ··· No obvious self-reversed of broad components.
- \cdots Smooth profile across Doppler shifts \Longrightarrow unresolved motion.
- \cdots Total PF intensity higher than core \Longrightarrow not scattering, plasma pocket.
- ··· Mg II k/h ratio ≈ 1.15 (thin 2:1) and C II 1334/1335 Å ratio ≈ 1 . (thin 1:2) \implies optically thick plasma?
- ··· PF profile width of 150 km/s and \sim 70 km/s redshift \implies 4X more energy in unresolved motions than in resolved ones \implies Magnetic fields play important role?

Analiză teoretică

Line opacity
$$\varepsilon \approx \frac{C_{31}}{A_{31} + C_{31}} \ll P_{esc} \approx \frac{1 - \exp(-\tau_0)}{\tau_0}$$

Radiation Anisotropy

 τ_0 for h is $\approx 1/2$, and for k is ≈ 1 , only outermost strands will be seen. Emission effectively thin across strand

 $I_{thin} = \frac{h\nu_{ji}}{4\pi} n_1 C_{ji} \frac{W}{\cos\theta} \approx 1.1 \times 10^7 \text{erg cm}^{-2} \text{ s}^{-1} \text{sr}^{-1}$ Mg II transitions Observed intensity ratio of triplet to h& k is 1/40: $\frac{I_{3d-3p}}{I_{3p-3s}} \approx \frac{C_{3s-3p}}{C_{3s-3d}} \approx \frac{1}{6} exp\left(\frac{4.86}{T_{e4}}\right) \Rightarrow T_{e4} \approx 2 - 2.5$ **Doppler shift** \sim 70 km/s shift \Rightarrow plasma dropped from \sim 5 Mm **Sudden onset** $\times 2$ increase in intensity in < 40 s. Small scale motions $(\xi_{10} \approx 100 \text{ km s}^{-1})$ within a coherent downflow of 70 km s⁻¹. **Broad lines origin:** Scattering inside the strand can not lead to emission so far from core. Therefore we assume: $\xi \approx v_A = \frac{B}{\sqrt{4\pi a}} \Rightarrow B \approx 17G$ in chromopshere The kinetic energy density $\sim 2 \times 10^{10}$ erg cm⁻².

X-class flare: 10^{11} erg cm⁻² s⁻¹ for $\sim 10^{2-3}$ sec, total energy density $\Rightarrow 10^{13-14}$ erg cm⁻², so only 1/1000 needed for waves.

Analiză teoretică

• Total radiated flux in Mg II h&k $\approx \pi I t_r \approx 3 \times 10^{10} \text{erg cm}^{-2}$ \Rightarrow Total radiative fluxes from chromosphere 4-10× higher (Anderson & Athay, 1989): $10^{11} \text{ erg cm}^{-2}$

• The line width and intensity decrease in time, suggesting slow decay of waves, with energy converted to heating by phase mixing, resonant absorption, ion-neutral interactions, etc.

• For reference, an Alfvénic wave with a period of 10 seconds ($\omega \approx 0.6$ rad sec⁻¹), oscillating in the plasma with $n_{12} \approx 1$ and $n_{n12} \approx 0.1$, consisting entirely of neutral helium. The ion-neutral helium collision time, $\tau_{ni} \approx 10^{-3} n_{n12}^{-1} \approx 10^{-2} \text{ sec}^{-1}$, which gives $\omega \tau_{ni} \approx 6 \times 10^{-3}$. Under this regime the wave energy dissipation time (Holzer et al., 1983) is

$$\tau_D \approx \frac{n_{12}}{n_{n12}} \frac{1}{\tau_{ni}\omega^2} \approx 2500 \text{ sec.}$$

Observed decay time of $\approx 10^3$ seconds may or may not be naturally explained without needing to invoke dynamical MHD processes, depending on the (unknown) frequency ω of the oscillations.

Concluzii

Liniile de emisie rezonantă ale atomului de Magneziu în primul stagiu de ionizare (Mg II) prezintă importante variații în funcție de nivelul de activitate solară, dar oferă informații corespunzatoare mai multor "înalțimi" din cromosferă dacă luam în calcul detaliile structurale ale profilului.

Conditii de activitate redusa: efecte la marginea supergranulelor

- Intensificări ale intensității și lărgimii profilelor
- Separarea maximelor însotiță de scăderea adâncimii centrului de absorbție
- Contrastul dintre zonele inactive pure și găurile coronale este partial vizibil în separarea maximelor de emisie

Condiți eruptive

- Profilul nu prezintă centru de absorbție \Rightarrow comprimarea zonei de emisie
- Liniile subordonate sunt în emisie \Rightarrow gradient de temperatură
- Intensificarea emisiei și lărgimii liniei \Rightarrow miscări turbulente
- Destabilizare filamentului precede erupția cu cel putin 10 minute
- Deplasare Doppler spre roşu persistentă în ploaia coronală
- Lărgirea liniilor cauzată de mișcări la scală mică în interiorul unei plasme anisotropice
- Cauză plauzibilă: Amortizare unor unde Alfvénice excitate în faza impulsivă a erupție în interiorul plasmei din ploaie coronală

Încotro?

Rezultatele spectroscopice sunt limitate de lipsa informațiilor care ar clarifica ambiguitățile observaționale. Posibile rezolvări:

- Multiple linii sensibile la condiții atmosferice din întregul volum
- Măsurători de câmp magnetic în cromosferă
- Multiple linii sensibile la efecte ale câmpului magnetic: efectul Hanle și efecte magneto-optice (iluminare anizotropică, variații de câmp magnetic)
- Modelare ale emisie acestor ioni, considerând structuri atomice suficient de detaliate, efecte radiative, în afara condițiilor de echilibru termic local
- Utilizarea de metode de inteligență artificială în prelucrarea și modelare datelor observaționale.

D. A. Lacatus

Cromosfera solară dezvăluită prin spectroscopie

Încotro?

Încotro?

Vă mulțumesc pentru atenție!

References

References

- Anderson, L. S., & Athay, R. G. 1989, Astrophys. J., 336, 1089
- De Pontieu, B., Title, A. M., Lemen, J. R., et al. 2014, Solar Phys., 289, 2733
- Holzer, T. E., Fla, T., & Leer, E. 1983, Astrophys. J., 275, 808
- Ishikawa, R., Bueno, J. T., del Pino Alemán, T., et al. 2021, Science Advances, 7, https://advances.sciencemag.org/content/7/8/eabe8406.full.pdf. https://advances.sciencemag.org/content/7/8/eabe8406
- Lacatus, D. A., Judge, P. G., & Donea, A. 2017, Astrophys. J., 842, 15
- Liu, W., Heinzel, P., Kleint, L., & Kašparová, J. 2015, Solar Phys., 290, 3525
- Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, Astrophys. J. Suppl., 45, 635
- Yokoyama, T., & Shibata, K. 1998, Astrophys. J. lett., 494, L113

