quantum technologies

turning a threat into an opportunity

I. quantum: the threat

II. quantum: the opportunity

III. quantum: a revolution in imaging

digitalisation: the next frontier

digital Europe

government cloud

cybersecurity is paramount

crypto: we use it every day

crypto: we use it every day

the problem

quantum computers will break internet security

- secure communications
- digital signatures
- mobile networks/5G
- financial transactions

mobile banking, POS, e-commerce

- authentication
- critical infrastructure
- secure voting
- software updating cars, computers

 \Rightarrow need to avoid the Q-Day (quantum apocalypse)

how serious is the threat?

Mosca equation

"store now, decrypt later" (SNDL) attack

Migration time

The number of years needed to properly and safely migrate the system to a quantum-safe solution

Shelf-life time

The number of years the information must be protected by the cyber-system

2020		2025	2030		2035
Threat timeline The number of years befor hreat actors will be able quantum-vulnerable syste	ore the relevant to break the ems			Dange	er zone
Source: Michele Mosca, Universi	ty of Waterloo, Cana	da ¹³			

quantum computing

a \$65 billion industry by 2030

IBM roadmap

Mode devel

Algor devel

Kerne devel

Quan syste

IBM

Development Roadmap

IBM **Quantum**

	2019	2020	2021	2022	2023	2024	2025	2026+
	Run quantum circuits on the IBM Cloud	Demonstrate and prototype quantum applications	Run quantum applications 100x faster on the IBM Cloud	Dynamic circuits for increased circuit variety, algorithmic sophistication	Frictionless development with quantum workflows built in the cloud	Call 1K+ qubit services from Cloud API and investigate error correction	Enhance quantum workflows through HPC and quantum resources	
					Quantum model service:	S		
					Natural Sciences	Finance		
pers		Qiskit application modu	les		Optimization	Machine Learning		
thm	1	Natural Sciences	Finance		Prebuilt quantum		Prebuilt quantum +	
pers			Machine Learning		runtimes		HPC runtimes	
ppers	Circuits		Qiskit Runtime	Dynamic circuits	Circuit libraries		Advanced control syste	ems
um ns	Falcon 27 qubits	Hummingbird 65 qubits	Eagle 127 qubits	Osprey 433 qubits	Condor 1121 qubits	Beyond 1K - 1M+ qubits		
			\diamond	\diamondsuit	\diamond			
Cloud	Circuits		Programs		Models			

... any solutions?

1. the classical way: post-quantum crypto (PQC)

find quantum-resistant, public-key classical algorithms \Rightarrow NIST PQC

the quantum way: quantum key distribution (QKD)
 use the power of quantum + symmetric crypto (AES, OTP)

the classical way: PQC already deployed

- signal protocol: enhanced by PQC
- protects from future threats of quantum computers
- 🧯 : iMessages with PQ3

Quantum-Secure Cryptography in Messaging Appa

@signalapp@mastodon.world

Announcing PQXDH! The first step in post-quantum resistance for the Signal Protocol, PQXDH protects your Signal calls & chats from potential future threats of breakthroughs in quantum computing. And it's already rolling out to Signal clients everywhere.

ignal.org/blog/pqxdh/

roqnet.ro

1. use quantum resources to securely distribute keys

2. use keys in symmetric crypto (OTP, AES etc)

quantum solves 2 problems:

- true (quantum) randomness
- secure key distribution eavesdropper detected

the quantum way: QKD

why does it work?

- no-cloning theorem ⇒ Eve cannot clone an unknown quantum state
- measurement changes a quantum state \Rightarrow higher QBER, detectable

Eve will be detected !

QKD

commercial

- providers: IDQ, ThinkQuantum, Toshiba, QTI, KeeQuant, Kets Quantum, QO Jena, LuxQuanta...
- ◆ € 150-300 k/pair

quantum: the opportunity

The Quantum Flagship Structuring activities & efforts

QUANTUM TECHNOLOGY APPLICATIONS

European Commission

High-precision geodesy and navigation

From Flagship to Fleet

Petrus: building EuroQCI

- network of 27 national QCIs
- fiber + free-space links
- cross-border links

EuroQCS

6 sites across EU

applications

- molecular simulations: new medicines
- new materials: batteries
- traffic optimisation: maps
- Iogistics: CMAG
- scheduling: Bolt Glovo?
- R&D, industry need quantum computers

quantum @RO

Romanian Quantum Network 2017 –

Vision

quantum: the driving technology in 21st century

Mission

develop quantum technologies in Romania

Strategic objectives

- research
- education
- dissemination

QUTECH-RO

2018 - 2021

 P1: Q-INFO
 P2: Q-CHIP
 P3: Q-VORTEX

 IFIN-HH
 INFLPR
 IMT

 quantum information quantum simulation quantum protocols
 integrated quantum photonics 3D laser fabrication
 optical vortices lithography

◆ €1.14 Mil

- 5 partners, 5 projects
- grant: UEFISCDI (PCCDI)
- https://roqnet.ro/qutech-ro/

P4: Q-LAB	P5: Q-FERMI
UPB	ITIM-Cluj
Applied quantum optics Lab IBM-Q Lab quantum source	quantum computation with Majorana Fermions
Je S.	

QUTECH-RO

play our strengths

use existing expertise/infrastructure

∜

theory, photonics/lasers, nanotechnologies

JĮ,

bootstrap a national program in quantum technologies

quantum source UPB + IFIN-HH

the first entangled-photons source build in RO

state-of-the-art

visibility: $\mathcal{V} = 98.9\%$

 $|S| = 2.684 \pm 0.03$

violates Bell-CHSH by $n_{\Delta} = 22$ standard deviations

fidelity: $\mathcal{F} = 97\%$

L.Dosan, A.Nazîru, M.Mihăilescu, R.I., Rom. Rep. Phys. 74, 119 (2022)

 \bigcap

2021 - 2023

RO national strategy in quantum communications

Q1. research

quantum research hubs

- Q2. education and training quantum specialists
- Q3. infrastructure

intra-city q. networks, national quantum backbone, cross-border links

• Q4. quantum industry

components, applications, services

https://qtstrat.granturi.ubbcluj.ro

a quantum revolution in imaging

spooky imaging

LETTER

doi:10.1038/nature1358

Quantum imaging with undetected photons

Gabriela Barreto Lemos^{1,2}, Victoria Borish^{1,3}, Garrett D. Cole^{2,3}, Sven Ramelow^{1,3}†, Radek Lapkiewkz^{1,3} & Anton Zeilinger^{1,2,3}

Nature **512**, 409 (2014)

spooky spectroscopy

Infrared spectroscopy with visible light

Dmitry A. Kalashnikov¹, Anna V. Paterova¹, Sergei P. Kulik² and Leonid A. Krivitsky^{1*}

Nature Photonics 10, 98 (2016); 10, 77 (2016)

IR microscopy with visible light

OPTICS

4

Microscopy with undetected photons in the mid-infrared

Inna Kviatkovsky¹*, Helen M. Chrzanowski¹, Ellen G. Avery^{2,3,4,5,6,7}, Hendrik Bartolomaeus^{2,3,4,5,6}, Sven Ramelow^{1,8}

OPTICS

Hyperspectral infrared microscopy with visible light

Anna V. Paterova¹, Sivakumar M. Manjam^{2,3}, Hongzhi Yang¹, Gianluca Grenci^{2,4}*, Leonid A. Krivitskv¹*

Sci.Adv. 6, eabd0460 (2020)

Constructive Destructive Off-axis parabolic Dichroic Difference

Sci.Adv. 6, eabd0264 (2020)

quantum imaging: 3 ways

Gilaberte Basset et al., https://doi.org/10.1002/lpor.201900097

quantum-enhanced VLBI

 \bigcirc

D. Gottesman et al., PRL 109, 070503 (2012)

quantum-enhanced VLBI M. Tsang, PRL **107**, 270402 (2011)

Fisher information, $\langle a^{\dagger}a \rangle = \langle b^{\dagger}b \rangle = \epsilon/2$, # measurements $M \sim T\Delta \nu$

direct (non-local)	local		
$ F^{(M)} \ge M\epsilon$	$ F^{(M)} \leq M[\epsilon^2 + \mathcal{O}(\epsilon^3)]$		

non-local measurements are better

beating the Rayleigh curse

- Rayleigh criterion: artefact of the imaging system
- info is contained in the phase, but imaging is done in intensity
- parameter estimation: Cramér-Rao bound

 $MSE(\theta) \ge \frac{1}{F(\theta)}$

MSE: mean-square error F: Fisher information

Tsang *et al.*, PRX **6**, 031033 (2016); Bojer *et al.*, New J. Phys. **24**, 043026 (2022) Nair & Tsang, PRL **117**, 190801 (2016); Lupo & Pirandola, PRL **117**, 190802 (2016)

beating the Rayleigh curse

Tsang, Resolving starlight: a quantum perspective, Contemp. Phys. 60, 279 (2020)

 \bigcirc

beating the Rayleigh curse

Tsang, Resolving starlight: a quantum perspective, Contemp. Phys. 60, 279 (2020)

 \bigcirc

quantum technologies

not if, but when

- secure communications
- faster computers
- better imaging for astronomy (and not only)

any sufficiently advanced technology is indistinguishable from magic

Arthur Clarke

quantum mechanics is magic

Daniel Greenberger

Thank you!

