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Sunquakes

Definition
Sunquakes are progressive circular waves

observed on the fotosphere, produced by solar flares.

Interest
Manual detection is often laborious.

Manifestation circumstances are not entirely known.
Several detection methods are available but none are automatic.
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Sunquakes

Helioseismic Holography

©Moradi et al., 2007

Time Distance

©Kosovichev and Zharkova, 1998

Movies/Wave Detection

©Moradi et al., 2007
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Data Morphology
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Data Morphology
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Challenges

imbalance: on average, 4% of all individual data samples are SQ

complexity: intensity and variety of SQ signature patterns

artefacts: "eye", AR shadow signatures, intense solar storms
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Artefacts
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Dataset Construction

sources: SC23 (1), SC24 (2)
MDI (3) and HMI (4) Dopplergram download (batch script)
coordinate conversion
Holography method application (5)
two obtained datsets (SunquakeNet;DOI10.34740):

1 acousic emission maps in FITS format: 53 (15 + 38)
2 grayscale 2D images in JPEG format:

⋆ positive class: 845 (SC23: 205 + SC24: 640)
⋆ negative class: 13.055 (SC23: 3891 + SC24: 9164)

,
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Experiment Areas

Reconstruction-based learning
unsupervised AutoEncoder feature extraction

feature classification

Contrastive learning
unsupervised and/or supervised CL feature extraction

feature classification

Object detection
region proposal

candidate region classification
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Reconstruction-based learning

Figure: AutoEncoder architecture
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Reconstruction-based experiments (AE & VAE)

AutoEncoder
▶ fully black reconstructions (ls ≤ 512)
▶ poor classification results

Variational AutoEncoder (VAE) (6)
▶ attempt to capture distinct characteristics
▶ almost fully black reconstructions (ls ≤ 512)
▶ little improvement in classification

Figure: AE vs. VAE architecture
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Reconstruction-based experiments (Log-Cosh VAE)

Log-Cosh VAE (7)
▶ ↑ values: L1 loss + ↓ values: L2 loss ⇒ Log-cosh loss
▶ attempt to mitigate the impact of noise
▶ poor reconstructions (ls ≤ 512)
▶ consistent improvement in classification

Figure: Log-cosh loss plots
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Reconstruction-based learning

Figure: Log-Cosh VAE reconstructions
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Contrastive Learning

Figure: self-supervised CL (left), supervised CL (right) applied to SunquakeNet
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CL Experiments

self-supervised CL (8)
▶ results similar to Log-Cosh VAE
▶ sunquake signatures are not consistently captured

supervised CL (9)
▶ attempt to capture distinct characteristics
▶ tedious and unstable training due to imbalance

self-supervised CL using upsampling ⇒ supervised CL with a weighted loss (10):
▶ attempt to mitigate the impact of imbalance
▶ significantly improved results
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Object Detection

Steps
identify multiple candidate object regions

classify whether or not each region is a Sunquake
return regions classified as Sunquake
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Augmentation Methods

Custom domain-specific Augmentations:
▶ Altered Random Erase:

⋆ forces the network to be attentive to all areas inside the image
⋆ replaces the typically used Random Crop
⋆ decreases the probability of occluding a Sunquake

▶ Solarized Low Pass Filter:
⋆ enhances high frequency signals and fades the others out
⋆ amplifies details for some Sunquake signatures

▶ Time Based Mixing:
⋆ combines successive grayscale frames into a single 3D image
⋆ maintains the sequence property of data

General Augmentations:
▶ Geometric transforms:

⋆ flips (horizontal and vertical)
⋆ rotations (90, 180, 270)
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Altered Random Erase

Figure: Visualization of the effect of the Altered Random Erase Augmentation
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Solarized Low Pass Filter

Figure: Visualization of the effect of Solarized Low Pass Filter Augmentation
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Time Based Mixing

Figure: Visualization of the effect of Time Based Mixing Augmentation
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Techniques to address imbalance

loss weighting

positive upsampling

SMOTE
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Loss Weighting

Regular supervised CL loss
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Positive upsampling

the number of positive image samples is increased for unsupervised methods
five extra copies are generated for each image (flips and rotations)
may impose a transformation bias to the model if used in supervised methods
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SMOTE

Definition
synthetic minority oversampling technique
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Best models (so far)

Sunquake time prediction

CL Model with shuffle bias
▶ frame level shuffling ⇒ shared Active Regions between the training and validation sets
▶ training specifications (two-step):

⋆ supervised CL, 50 epochs: DenseNet-121, temperature 0.1, positive upsampling
⋆ embeddings classification: various classifiers trained using SMOTE

CL Model with no bias
▶ event level shuffling ⇒ unique Active Regions in the training and validation sets
▶ training specifications (three-step):

⋆ self-supervised CL, 500 epochs: ResNet-18, positive upsampling
⋆ supervised CL 100 epochs: weighted loss, temperature 0.07
⋆ embeddings classification: various classifiers trained using SMOTE

Sunquake location prediction

Object Detection Model
▶ faster R-CNN, 50 epochs, trained only on positive SC23 image data and regions
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Process Diagram
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Numerical Results

Classifier K-NN (Bagging) SVC (Poly) SVC (RBF) Logistic Regression SGD
Augmentation None SMOTE None SMOTE None SMOTE None SMOTE None SMOTE

Precision 0.97 0.80 0.97 0.98 0.99 0.94 0.97 0.91 0.91 0.89
Recall 0.54 0.96 0.96 0.97 0.86 0.99 0.98 0.99 0.94 0.93

F1-Score 0.55 0.86 0.97 0.97 0.91 0.96 0.98 0.95 0.94 0.93
Accuracy 0.94 0.95 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98

Metrics Avg 0.750 0.892 0.947 0.977 0.935 0.97 0.98 0.96 0.942 0.932

Classifier K-NN (Bagging) SVC (Poly) SVC (RBF) Logistic Regression SGD
Augmentation None SMOTE None SMOTE None SMOTE None SMOTE None SMOTE

Precision 0.63 0.65 0.66 0.84 0.49 0.59 0.64 0.64 0.54 0.62
Recall 0.54 0.54 0.54 0.54 0.50 0.54 0.54 0.54 0.54 0.54

F1-Score 0.55 0.55 0.55 0.55 0.49 0.55 0.55 0.55 0.54 0.55
Accuracy 0.93 0.93 0.93 0.94 0.93 0.92 0.93 0.93 0.89 0.93

Metric Avg 0.662 0.667 0.67 0.715 0.605 0.65 0.665 0.665 0.627 0.66

Table: Macro Average performance of different classifiers over embeddings produced by the CL model
with top: shuffle bias, bottom: no bias, trained with and without SMOTE augmentation, for the
test data in SC23 & SC24 (2622 negative and 186 positive samples)
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Prediction Distribution

Figure: Predictions of the left: shuffle bias model; right: unbiased model, for the test data in SC23 &
SC24, clustered by UMAP components
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Prediction Analysis (unbiased model)

Event Counts Event Counts
Date TP FP FN GT Date TP FP FN GT

1996-07-09 09:01 0 0 19 19 2012-07-04 09:47 2 0 17 19
2001-04-06 19:13 0 0 16 16 2012-07-06 13:26 2 0 15 17
2001-09-24 09:35 0 0 11 11 2013-11-08 04:20 2 0 18 20
2002-07-23 00:27 0 6 14 14 2015-03-11 16:11 2 0 14 16
2012-03-05 19:27 2 0 19 21 2015-09-28 14:53 2 0 18 20
2012-03-06 07:52 2 0 11 13

Table: SVC (poly) predictions for embeddings produced by the unbiased CL model for the test data in
SC23 & SC24 (2622 negative şi 186 positive samples).
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Cosine distance characteristic analysis (unbiased model)

Figure: Cosine Distances computed between consecutive frames embeddings for the event at
2012-07-06 13:26 in the test set
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Mean characteristic analysis (unbiased model)

Figure: Means computed for frame embeddings for the event at 2012-07-06 13:26 in the test set
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Cosine distance characteristic analysis (biased model)

Figure: Cosine Distances computed between consecutive frames embeddings for the event at
2012-07-06 13:26 in the test set
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Unlabeled (problematic) dataset analysis

problematic data cubes

AIA/RHESSI prediction analysis on additional datasets
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Predictions for the problematic 2012.05.08 13:02 event

Figure: Position of candidate SQ signatures, at frames [180, 188), predicted positive for the 2012.05.08
13:02 event in the unlabeled dataset.
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Prediction validation for the problematic 2012.05.08 13:02 event

Figure: Flaring Activity observed in the AIA 304 Å channel and the RHESSI location of seismic
signatures for the 2012.05.08 13:02 event in the unlabeled dataset.
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Predictions for the problematic 2011.12.30 03:03 event

Figure: Position of candidate SQ signatures, at frames [15, 22), predicted positive for the 2011.12.30
03:03 event in the unlabeled dataset.
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Prediction validation for the problematic 2011.12.30 03:03 event

Figure: Flaring Activity observed in the AIA 94 Å channel and the RHESSI location of seismic
signatures for the 2011.12.30 03:03 event in the unlabeled dataset.
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Summary

constructed and published two datasets of SC23 & SC24
▶ strongly imbalanced
▶ with artefacts
▶ complex

implemented multiple ML detection methods:
▶ AutoEncoders (AE, VAE, Log-Cosh VAE)
▶ CL (self-supervised, supervised, with weighted loss)
▶ Object Detection (Faster R-CNN)
▶ Various classifiers

implemented 3 custom domain-specific augmentations:
▶ Altered Random Erasing
▶ Solarized Low Pass Filter
▶ Time Based Mixing
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Findings

AE results are poor, but a level of clustering was observed at event level

distinct CL models provide consistent results

distinct CL models capture a low similarity between
Sunquake transition frames and their neighbors

correlations are found between predicted lower acoustic emission sources
and Solar eruptions accompanied by high-energy X-Ray emissions
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Prospect

Time and location prediction components are separated
improve CL models with explainability techniques

Models predict Sunquakes of a too short duration
mix more than 3 frames in the Time Based Mixing augmentation

Spurious correlations are not addressed
create a more fine-grained separation of signature pattern classes
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Thank you!

Don’t hesitate to reach out if you have any questions or ideas related to this topic!

Mercea.Fl.Vanessa@student.utcluj.ro / mercea.vanessa@yahoo.com
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