SolO/EUI/FSI 304 Å

Eruptions observed by EUI/FSI instrument onboard Solar Orbiter Marilena Mierla^{1,2} and the EUI team 1. Royal Observatory of Belgium 2. Institute of Geodynamics of the Romanian Academy

2022-02-15 22:14

Overview of the talk

- 1. Introduction of the EUI instrument
- 2. Data products
- 3. Eruptions observed by EUI/FSI
- 4. Conclusions

Full Sun Imager (17.4/30.4nm

High Res Imager

30mm

a Fi

High Res Imager

140 400 States

47.4mm

EUI: Extreme Ultraviolet Imager

0

2.75mm edge

			First Light (2020 May 12 - @0.66 AU)
@ 1 AU	high resolution HRIEUV HRILYA	full sun FSI	FSI 304 FSI 174
FOV	1 Rs	14 Rs	Ship Li _eut -ts104-1ssp. 202091709882299, 10,115 Li
plate-scale	360km	3300km	CONTREST LONGING PRED: 1 CONTREST (D) (D) (CONSIDE 000) PRED: 1 CONSIDE 000000000000000000000000000000000000
@ 0.28 AU	high resolution HRIEUV HRILYA	full sun FSI	
FOV	0.28 Rs	4 Rs	Volo Li, euc. Introductiong, 2000012112255992, Vol. 131 I. 2000 Li, euc. Introductiong, 2000012112255992, Vol. 131 Null 2000 Science Null 2000 Science 2000 Science 2000 Science Volo Li, euc. Introductiong, 2000012112255992, Vol. 131 Null 2000 Science 2000 Science Volo Science Volo Science 2000 Science 2000 Science Vol
plate-scale	100km	920km	Line FAT Month Section Section <th< th=""></th<>

https://www.sidc.be/EUI/intro

Recent HRIEUV Data

Data Products

Full disk and high resolution images

FSI occulted images

Eruptions Observed by EUI/FSI

All eruptions from May 2020 to present: https://www.sidc.be/EUI/solar-eruptions

Large eruptions: https://www.sidc.be/EUI/data/movie/largeEruptions/

Daily movies: https://www.sidc.be/EUI/data/movie/dailySynoptics

https://www.aanda.org

Letter to the Editor

Prominence eruption observed in He II 304 Å up to >6 R_{\odot} by EUI/FSI aboard Solar Orbiter*

M. Mierla^{1,2}, A. N. Zhukov^{1,3}, D. Berghmans¹, S. Parenti⁴, F. Auchère⁴, P. Heinzel^{5,6}, D. B. Seaton⁷, E. Palmerio⁸, S. Jejčič^{9,10}, J. Janssens¹, E. Kraaikamp¹, B. Nicula¹, D. M. Long¹¹, L. A. Hayes¹², I. C. Jebaraj¹, D.-C. Talpeanu¹, E. D'Huys¹, L. Dolla¹, S. Gissot¹, J. Magdalenić¹, L. Rodriguez¹,

- S. Shestov¹, K. Stegen¹, C. Verbeeck¹, C. Sasso¹³, M. Romoli^{14,**}, and V. Andretta¹³
- ¹ Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium, 1180 Brussels, Belgium e-mail: marilena.mierla@oma.be
- ² Institute of Geodynamics of the Romanian Academy, 020032 Bucharest-37, Romania
- ³ Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992 Moscow, Russia
- ⁴ Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405 Orsay, France
- ⁵ Astronomical Institute of the Czech Academy of Sciences, 251 65 Ondřejov, Czech Republic
- ⁶ University of Wrocław, Center of Scientific Excellence Solar and Stellar Activity, Kopernika 11, 51-622 Wrocław, Poland
- ⁷ Southwest Research Institute, Boulder, CO 80302, USA
- ⁸ Predictive Science Inc., San Diego, CA 92121, USA
- ⁹ Faculty of Education, University of Ljubljana, 1000 Ljubljana, Slovenia
- ¹⁰ Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- ¹¹ Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK
- ¹² ESTEC, European Space Agency, 2201 AZ Noordwijk, The Netherlands
- ¹³ INAF Osservatorio Astronomico di Capodimonte, 80131 Naples, Italy
- ¹⁴ Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino FI, Italy

Received 13 May 2022 / Accepted 20 May 2022

Observations

Observations

https://solar-mach.github.io/

Selected features

Kinematics

Signal vs Background

Radiative Properties

The lower part of the prominence in FSI304 and EUVI304 is much brighter than the underlying disk => it is unlikely that the He II emission there is produced by the resonant scattering of the disk radiation.

At the observed speeds of around 500 km/s the Doppler dimming effect in the 304 Å line will make the resonantly scattered emission negligible (Labrosse & McGlinchey 2012).

The excitation of the He II 304 Å line is probably dominated by collisions rather than by resonant scattering.

Conclusions - Huge Eruption

- The prominence could be tracked in FSI 304 up to a projected height of 6.64 Rs (3D height of 6.97 Rs).
 - The presence of the He II 304 Å emission at heights above 6 Rs indicates that this part of the prominence was not heated to the fully ionised state during its propagation.
- This is the first time that a prominence is observed at such a large height in the FOV of an EUV imager.
- The excitation of the He II 304 Å line is probably dominated by collisions rather than by resonant scattering.
- The brightness of the trailing feature of the prominence at some point starts to increase with distance.
 - The temperature increases (thus producing more He+ ions) or
 - The prominence column density increases due to geometrical rearrangement

RESEARCH

Three Eruptions Observed by Remote Sensing Instruments Onboard Solar Orbiter

Marilena Mierla^{1,2} · Hebe Cremades³ · Vincenzo Andretta⁴ · Iulia Chifu⁵ · Andrei N. Zhukov^{1,6} · Roberto Susino⁷ · Frédéric Auchère⁸ · Angelos Vourlidas⁹ · Dana-Camelia Talpeanu¹ · Luciano Rodriguez¹ · Jan Janssens¹ · Bogdan Nicula¹ · Regina Aznar Cuadrado¹⁰ · David Berghmans¹ · Alessandro Bemporad⁷ · Elke D'Huys¹ · Laurent Dolla¹ · Samuel Gissot¹ · Giovanna Jerse¹¹ · Emil Kraaikamp¹ · David M. Long^{12,13} · Benjamin Mampaey¹ · Christian Möstl¹⁴ · Paolo Pagano^{15,16} · Susanna Parenti⁸ · Matthew J. West¹⁷ · Olena Podladchikova^{18,19} · Marco Romoli^{20,21} · Clementina Sasso⁴ · Koen Stegen¹ · Luca Teriaca¹⁰ · William Thompson²² · Cis Verbeeck¹ · Emma Davies²³

Received: 22 November 2022 / Accepted: 21 February 2023 © The Author(s) 2023

Spacecraft Positions

Eruption2 and Eruption3

Eruption1

Eruption1 on February 21, FSI 304

Eruption2 and Eruption3 on March 21, FSI 304

Observations of Three Prominence Eruptions

Observations of the Corresponding CMEs

Observations of the Corresponding CMEs -**Metis** 21-Feb-2021 11:10:15

-2 -4

-2 -4

6 4 2 . 0 -2 -4

-2 0

21-Mar-2021 21:36:15

.2 .

-4 -2 0 2 4 4

-4 -2 2 4

0

2 4

Q -4 -2 2 4

-6

6 ' 4 2 0 -2 -4 -6

Y / solar radii

Conclusions – Three Eruptions

- The visual aspect of the three prominence eruptions is very different in EUV images taken from different perspectives.
- The values derived from the GCS reconstruction, higher in the corona compared with the ones from triangulation, lower in the corona show that:
 - Eruption 1 was deflected towards the equator by 25°
 - Eruption 2 was deflected towards the equator by 15°
 - Eruption 3 only shows a slight deflection towards the equator and a stronger deflection towards the central meridian.
- The deflection of the eruptions could have been influenced by the nearby polar coronal holes.

The eruption of 22 April 2021

Rodriguez et al., SolPhys

Eruption 24-25 December 2021

Sasso et al., in preparation

Eruptions at the First Perihelion: 2 March – 6 April 2022

Eruptions at the First Perihelion: 16 March 2022

Eruptions at the First Perihelion: 21 March 2022

Eruptions at the First Perihelion: 28 March 2022

Questions to Answer

What radiative processes are dominating in prominences at higher heights?

What is the morphology of the erupting prominences?

The large FOV of FSI, plus the observations taken from different latitudes and together with radiative transfer calculation and modelling will help answering these questions.

Future Work

"A statistical study of the prominences seen far in the FOV of FSI", work led by Elke D'Huys.

"Radiative processes of prominences at higher heights", work led by Petr Heinzel and Susanna Parenti.

EUI Open Data Policy

https://www.jhelioviewer.org (Datasets/ROB/SOLO) https://sidc.be/EUI/data (L1, L2 and L3 data)

Contact: eui@sidc.be

Thank you!