

Madalina Tudorache, University of Oxford

Matt Jarvis, Ian Heywood, Anastasia Ponomareva, Imogen Whittam & the MIGHTEE-HI collaboration

Outline

- Introduction
 - Filaments of the cosmic web
- Galaxy spins + cosmic web
- Other galaxy properties + cosmic web

The Cosmic Web: Introduction

- The Universe contains a network-like distribution of galaxies and matter - the cosmic web
- We want to understand how do the filaments and the galaxies influence each other

Reproduced from the Millennium Simulation (Springel et al. 2005)

The Cosmic Web: From theory to observations

The Cosmic Web: From theory to observations

The Cosmic Web: DisPerSE

- Based on Delaunay tessellation
- Parameters
 - Persistence ratio significance
 - Boundary conditions periodic, mirror, void, smooth

Sousbie et al. (2011)

Outline

- Introduction
 - Filaments of the cosmic web
- Galaxy spins + cosmic web
- Other galaxy properties + cosmic web

I. Filament-galaxy alignment using HI data

Neutral hydrogen (HI): why and how

• Observed using radio telescopes

• Can be used for measurements of: Position Angle (PA) of galaxy Inclination (i) of galaxy Dynamical mass of galaxy -- $M_{dyn} = \frac{R}{G}V_{rot}^2$

MIGHTEE/HSC

Galaxy alignments in literature

- Simulations predict a transition between the aligned and perpendicular orientations of galaxy spins depending on the HI mass (Kraljic et al. 2019)
- HI spin of the galaxies and the filaments tend to be aligned (Blue Bird et al. 2020)

Data: COSMOS and XMM-LSS

Find filaments using the optical/NIR data from the COSMOS and the XMM-LSS fields:

- COSMOS: CFHTLS & Subaru HSC
- XMM-LSS VIDEO and UltraVISTA

Spectroscopic redshift filaments

Tudorache et al. (2022)

Meerkat & The MIGHTEE survey

COSMOS Radio continuum, Heywood et al. (2022)

- Radio survey in L-band, spanning 900-1670 MHz
- Spans four fields: COSMOS, XMM-LSS, ELAIS-S1, ECDFS

XMM-LSS Radio continuum, Heywood et al. (2022)

MIGHTEE-HI

- HI emission project within the MIGHTEE survey using the MeerKAT radio telescope (Maddox et al. 2020)
- 77 HI galaxies from the MIGHTEE-HI Early Science observations

Ponomareva et al. (2021)

Ranchod et al. (2020)

The angle between filaments and galaxies

Tudorache et al. (2022)

Compute distance to filaments

M. Tudorache – AIRA Jan. 2023

Distance-to-filament

Distance Cut $\langle |\cos\psi| \rangle$ \mathbf{p}_{KS} 0 Mpc < d < 5 Mpc</td>0.66 ± 0.04 $5 \cdot 10^{-2}$ 5 Mpc < d < 10 Mpc</td>0.37 ± 0.08 $9 \cdot 10^{-2}$

HI Mass

aligned

Paramete	er	Cut	$\langle \cos\psi \rangle$	p _{MW}
$\log_{10}\left(\frac{M_{\rm H}}{M_{\odot}}\right)$	ц) <	9.78 9.78	0.52 ± 0.04 0.50 ± 0.05	0.40
Parameter	Kend T	lall's Tau p-va	u Spearm lue coefficient	an Rank p-valu

Baryon Mass fraction

p_{MW}

0.13

p-value

0.355

HI-to-stellar mass fraction

aligned

Summary of Part I

- Used DisPerSE to compute filaments based on the COSMOS and XMM-LSS spectroscopic catalogues
- Crossmatching these filaments with HI galaxies we found that:
 - distance-to-filament: lower distances correspond to aligned spin
 - HI content of galaxy: no correlation found
 - baryon mass fraction: no correlation found
 - HI-to-stellar mass ratio: lower ratios correspond to aligned spin

Outline

- Introduction
 - Filaments of the cosmic web
- Galaxy spins + cosmic web
- Other galaxy properties + cosmic web

II. Effect on galaxy properties by filaments

Stellar mass/sSFR and filament distance: simulations

 At low redshift, massive galaxies, as well as galaxies with a low sSFR can be usually found residing in the core of the filaments

Stellar mass as a function of filament distance: observations

• At low redshift, massive galaxies can be usually found closer to filaments

Also see: Alpalsan et al. (2015), Laigle et al. (2017)

sSFR as a function of filament distance: observations

• At low redshift, passive galaxies can be usually found closer to filaments

Also see: Darvish et al. (2014), Bonjean et al. (2020)

Photometric redshift filaments

Tudorache et al. in prep

Completeness of sample

Stellar mass sample

60

Distance to filament [Mpc]

10

0

Stellar mass - D_{fil}

Stellar mass - D_{fil}

0.2 < z < 0.4

Stellar mass - D_{node}

0.2 < z < 0.4

Stellar mass distributions

sSFR-z relationship

Johnston et al. (2015)

0.2 < z < 0.4

sSFR - D_{fil}

M. Tudorache – University of Oxford Dec. 2022

0.2 < z < 0.4 Normalised by number of bins 0.4 < z < 0.6 Low sSFR Normalised by number of bins 0.7 0.70 Low sSFR * 🕴 High sSFR 0.65 0.8 < z < 1.0 0.6 Fraction 0.60 Normalised by number of bins 0.8 0.55 Eraction ۲ 0.7 0.4 0.45 0.6 -0.3 0.40 Fraction - 5.0 Low sSFR • 0-10 10 -20 20 -30 30 -**†** High sSFR 0.35 40 Distance bin [Mpc] 0.30 0.4 0 -10 10 -20 20 -30 40 -50 30 -40 Distance bin [Mpc] 0.3 • -20 -30 0 -10 10 -20 30 -40 -50 50 -60 40 Distance bin [Mpc]

 $sSFR - D_{node}$

sSFR distributions

Summary of Part II

- Used DisPerSE to compute filaments based on the COSMOS and XMM-LSS photometric catalogues and quantified possible filament distributions
- Crossmatching these filaments with galaxies we investigated:
 - Stellar mass and filament/node distance
 - sSFR and filament/node distance

Two distinct distributions!

Conclusions

Part I

Stellar mass as well as filaments have a strong influence on the spin of galaxies

- Mergers
- Morphology of the galaxies

Part II

Filaments can be computed at higher redshifts using photometry

Position of galaxies within filaments will affect their properties

Thank you!

Madalina Tudorache University of Oxford madalina.tudorache@physics. ox.ac.uk

