Observații Spectrale, Polarimetrice, și Modelări Analitice ale Coroanei Solare:

> I Geyseri Coronali Il Inversii de câmp magnetic coronal

> > A. R. Paraschiv

National Solar Observatory, AURA, USA Monash University, School of Mathematical Sciences, Australia

AIRA Seminar, Aprilie 2021

< □ > < □ > < □ > < □ > < □ > < □ >

JAC.

b. Proprietăți termale și supra-termale ale Geyserelo

Sar

- c. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

I Geyseri Coronali

- Ia. Morfologia jeturilor recurente din regiuni active
- Ib. Proprietăți termale și supra-termale ale Geyserelor
- Ic. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Il Inversii de câmp magnetic coronal

la. Morfologia jeturilor recurente din regiuni active

Ia. Morfologia jeturilor recurente din regiuni active

5900

< □ ▶ < 同

I Geyseri Coronali Il Inversii de câmp magnetic coronal

Stage II

la. Morfologia jeturilor recurente din regiuni active

- Ib. Proprietăți termale şi supra-termale ale Geyserelo
- lc. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Hα 2000 SXR

South

CANFIELD ET AL 1996

• Jeturi Polare vs. regiuni active (AR).

- Jeturi Standard și Blowout.
- Jeturi recurente și similare (homologous).

 </u

• Erupții de (micro)filamente?

Fig. 10g

Stage I

North

Fig. 105

4

nac

la. Morfologia jeturilor recurente din regiuni active

Jeturi din periferia AR11302

Observație a unei erupții în multiple lungimi de undă

10 jeturi au fost asociate unui sit unic, denumit Geyser Coronal, care se manifestă in penumbra regiunii active.

I Geyseri Coronali

Il Inversii de câmp magnetic coronal

Tracking temporal

- la. Morfologia jeturilor recurente din regiuni active
- Ib. Proprietăți termale şi supra-termale ale Geyserelo
- Ic. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

la. Morfologia jeturilor recurente din regiuni active

Time

DQC

No	Time	AIA filtor	Width	Length	Proj. Speed
140.	[hh : mm UT]	Aller	[<i>km</i>]	[<i>km</i>]	[km s ⁻¹]
15	02-55 UT	171	2616	28700	251
J2	03.55 01	304	3052	28069	231

Analiză cu pseudo-fantă

I Geyseri Coronali

Il Inversii de câmp magnetic coronal

la. Morfologia jeturilor recurente din regiuni active

Ib. Proprietăți termale și supra-termale ale Geyserelor

< □ > < □ > < □ > < □ > <</p>

500

- c. Geyseri coronali şi izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Ia. Morfologia jeturilor recurente din regiuni active
lb. Proprietăți termale și supra-termale ale Geyserelor
Ic. Geyseri coronali și izbucniri radio de tip III
Id. Manifestări magnetice ale jeturilor coronale

Ib. Proprietăți termale și supra-termale ale jeturilor și ale Geyserelor

< 🗆 🕨

990

I Geyseri Coronali

- nversii de câmp magnetic coronal
- la. Morfologia jeturilor recurente din regiuni active
- lb. Proprietăți termale și supra-termale ale Geyserelor

500

- Ic. Geyseri coronali și izbucniri radio de tip I
- Id. Manifestări magnetice ale jeturilor coronale

Observatii cu filtre spectroscopice SDO/AIA

A. R. Paraschiv

I. A. Morfologia jeturilor recurente din regiuni active
 I. Geyseri Coronali
 I. Proprietăți termale și supra-termale ale Geyserelor
 I. Inversii de câmp magnetic coronal
 I. Geyseri coronali și izbuchiri radio de tip III
 I. Manifestări magnetice ale istruiține coronale

Măsura emisiei diferențiale a plasmei:

 $I_{fil} = F_{fil}(T_e) \cdot \int n_e^2 dl = F_{fil}(T_e) \cdot \int DEM(T_e) dT_e \qquad [DN \cdot s^{-1} \cdot pixel^{-1}]$

• Rații de intensitate ale filtrelor: $(I_{loop} - I_{cor})_{fil1} = F_{fil1}(T_e) \cdot I \cdot (n_{e-loop}^2 + 2 \cdot n_{e-loop} \cdot n_{e-cor})$ $(I_{loop} - I_{cor})_{fil2} = F_{fil2}(T_e) \cdot I \cdot (n_{e-loop}^2 + 2 \cdot n_{e-loop} \cdot n_{e-cor})$ (Mariska & Withbree, 1978; for jets: Pucci et.al, 2013; Paraschiv et. al, 2015, etc.)

• Inversii cu minimizare chi^2 : $\chi^2 = \frac{(I_{fil} - F_{fil} \cdot DEM(T_e))^2}{\sigma_l^2} \rightarrow min \quad where : \quad \lim_{log(T_e) \in [5.7, 7.35]} (Aschwanden, 2013; A2013)$ $\chi^2 = \frac{(I_{fil} - F_{fil} \cdot DEM(T_e))^2}{\sigma_l^2} + \lambda (L \cdot (DEM(T_e) - DEM_0(T_e)))^2 \rightarrow min$

(Hannah & Kontar, 2012; H2012)

• Inversii cu matrici sparse: $\begin{array}{c} D_{ij}x_j \leq y_i + \sigma_i \\ y_i = D_{ij}x_j & \sum_{j=11}^n x_j \rightarrow \textit{min} \quad \textit{where}: \quad \begin{array}{c} D_{ij}x_j \leq y_i + \sigma_i \\ D_{ij}x_j \geq y_i - \sigma_i \\ x_j \geq 0 \end{array}$

(Cheung et. al, 2015; C2015)

• Analiza noastră a arătat că incertitudinile nu sunt neglijabile când discutăm despre material eruptiv.

- Determinările sunt constrânse atunci când $\chi^2 < 4$. Noi am atins o astfel de metrică doar zone de calm și/sau găuri coronale.
- \bullet Inversiile de tip χ^2 s-au dovedit a nu fi foarte credibile în cazul observațiilor noastre.
- Există diferențe semnificative între rezultatele obținute cu C2015 față de H2012.
- Cunoaște-ți datele!

I Geyseri Coronali I Inversii de câmp magnetic coronal

- Ia. Morfologia jeturilor recurente din regiuni active
- lb. Proprietăți termale și supra-termale ale Geyserelor

DQC

- Ic. Geyseri coronali şi izbucniri radio de tip II
- Id. Manifestări magnetice ale jeturilor coronale

lb. Proprietăți termale și supra-termale ale Geyserelor

DQC

• Pierderile coronale sunt $\sim 10^7 erg cm^{-2} s^{-1}$ (*Withbroe & Noyes*, 1977).

naa

- Ib. Proprietăti termale și supra-termale ale Geyserelor

naa

I □ ▶

Analiză a emisiei în raze X

- Reconstructia sursei de raze X cu RHESSI a evidentiat surse de raze x distincte dure (Hard) și moi(Soft).Putem deduce astfel existența emisiei supra-termale?

I Geyseri Coronali Il Inversii de câmo magnetic coronal la. Morfologia jeturilor recurente din regiuni active

Image: 1

lb. Proprietăți termale și supra-termale ale Geyserelor

nac

- Ic. Geyseri coronali şi izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Diagramă flux-timp în raze X pentre J2, J3, și J6

I Geyseri Coronali Il Inversii de câmp magnetic coronal

- a. Morfologia jeturilor recurente din regiuni active
- lb. Proprietăți termale și supra-termale ale Geyserelor
- Ic. Geyseri coronali şi izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Analiză spectrală în raze X pentru J2, J3, și J6

 Emisie supratermală este prezentă, cel mai probabil fascicule de electroni de energie înaltă ce bombardează straturile inferioare ale atmosferei solare. Modelul de emisie termală cu funcție de putere (power law distribution):

$$\begin{aligned} J2 \to RHESSI \ n_e &= 0.04 \ 10^{11} \ cm^{-3} \leftrightarrow EUV \ n_e &= 0.02 \ 10^{11} \ cm^{-3} \\ J3 \to RHESSI \ n_e &= 0.04 \ 10^{11} \ cm^{-3} \leftrightarrow EUV \ n_e &= 0.05 \ 10^{11} \ cm^{-3} \\ J6 \to RHESSI \ n_e &= 0.06 \ 10^{11} \ cm^{-3} \leftrightarrow EUV \ n_e &= 0.06 \ 10^{11} \ cm^{-3} \end{aligned}$$
 both measurements at $logT_e = 7.35$

• Energiile termale totale disipate E_{th} sunt în ordinul a: -J2=2.5 10²⁷ erg, J3=3.4 10²⁷ erg, and J6=3.9 10²⁷ erg. -Statistici de microflares RHESSI: $E_{th} \sim 10^{26} - 10^{30}$ erg (Hannah et. al, 2008). -Observații de microflares NUSTARR: $E_{th} = 9 \, 10^{27}$ erg (Wright et. al, 2017).

500

• Geyserul este energetic compatibil cu microflares impulsive.

la. Morfologia jeturilor recurente din regiuni active
Ib. Proprietăți termale și supra-termale ale Geyserelor
Ic. Geyseri coronali și izbucniri radio de tip III
ld. Manifestări magnetice ale jeturilor coronale

• Modelele thick-target fitează datele numai în timpul maximului erupției.

• Observațiile noastre nu pot discerne dacă evaporarea cromosferică este procesul dominant ce duce la termalizare.

• Geyserul apare a fi compatibil și cu componenta supra-termală a emisiei unui microflare.

Detalii în Paraschiv, Donea, & Judge 2021 (in prep. valabil la cerere)

Ic. Geyseri coronali și izbucniri radio de tip III

Ic. Geyseri Coronali și izbucniri radio de tip III

5900

∍

< □ ▶ < 同

I Geyseri Coronali Il Inversii de câmp magnetic coronal Ia. Morfologia jeturilor recurente din regiuni active

Ib. Proprietăți termale şi supra-termale ale Geyserelor

- Ic. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

A. R. Paraschiv

I Geyseri Coronali

Ia. Morfologia jeturilor recurente din regiuni activita

Ib. Proprietăţi termale şi supra-termale ale Geyserelo

Sar

Ic. Geyseri coronali și izbucniri radio de tip III

Id. Manifestări magnetice ale jeturilor coronale

Geyser Dataset	No. Jets	Type-III Radio Bursts 1. 2.		Correlated (1.) Events SNR	Study Reference	
G1 AR11302 25.09.2011T00:00-23:59	10	S-B: 9(+1)/10 W: 5(+1)/7	S-A: 0/10	$9/10 > 3\sigma$ $2\sigma < 1/10 < 3\sigma$	Our work Paraschiv & Donea 2019	
G2 AR11514 30.06.2012T17:00-01:00	7 site C	W: 6/7	S-B+S-A: 0/7	$5/7 > 3\sigma$ $2\sigma < 1/7 < 3\sigma$	Sterling et. al, 2016	
G3 AR11513 02.07.2012T17:00-03:00	6	W: 3(+1)/6 S-A: 3/6	S-B: 0/6	$4/6 > 3\sigma$	Chen et. al, 2015	
G4 AR11931 25.12.2013T23:00-08:00	10/12	W: 5(+2)/10	S-B+S-A: 0/10	$2/10 > 3\sigma$ $2\sigma < 6/10 < 3\sigma$	Hu et. al, 2016	
G5 AR12192 22.10.2014T02:00-00:00	8	W: 6(+1)/8	x	$5/8 > 3\sigma$ $2\sigma < 2/8 < 3\sigma$	Panesar et. al, 2016	
G6 AR12301 09.07.2015T05:00-12:00	9/11	W: 6(+1)/9	x	$5/9 > 3\sigma$ $2\sigma < 2/9 < 3\sigma$	Liu et. al, 2016	

- Am realizat o asociere corelativă între jeturi și izbucniri (pozitivă și negativă) folosind seturi de date din literatură.
- 50 de jeturi au fost analizate. 41 jeturi (35+ 6 erupții incerte) sunt asociate și corelate cu izbucniri de tip III.
- Rata medie de drift pentru izbucniri între 16MHz \rightarrow 3MHz: $\Delta t = 78 \pm 60$ s.
- Este asta tot ce se poate realiza?

Diferenta de timp între SDO AIA-171Å si canalul radio de 3MHz al SWAVES · Total $\sigma_{r \text{ obs}} = 27$ Partial $\sigma_{r \text{ obs}} = 22$ Number of correlated events Time Delay [s] • τ_{obs} = 72±33 s DQC < 🗆 🕨

Ic. Geyseri coronali și izbucniri radio de tip III

A. R. Paraschiv

I Geyseri Coronali e câmp magnetic coronali I Geyseri Coronali e câmp magnetic coronali I Geyseri coronali şi izbuchiri radio de tip III I di Mariterizi i magnetica de izipulita coronale

Modelare analitică a timpului de parcurgere.

Urmărim Mann et. al, 1999

(日)

SOG

Ecuația de continuitate:

 $\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \rho \boldsymbol{v} = \boldsymbol{0} \quad \Rightarrow \boldsymbol{r}^2 \cdot \boldsymbol{n}(\boldsymbol{r}) \cdot \boldsymbol{v}(\boldsymbol{r}) = \boldsymbol{C}$

Ecuația de moment cinetic:

$$\rho \cdot \left[\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla\right] = -\nabla p + J \times B = -\nabla p + \frac{1}{\mu_0} B \times (\nabla \times B) + G$$

Legea lui Faraday: $\frac{\partial B}{\partial t} = -\nabla \times E = \nabla \times (v \times B)$

 \rightarrow Spiralele de vânt solar ale lui Parker: $\frac{v(r)^2}{v_c^2} - ln(\frac{v(r)^2}{v_c^2}) = 4ln(\frac{r}{r_c}) + 4 \cdot \frac{r_c}{r} - 3$

Presupunând $v \ll v_c$ obținem o formulă barometrică a densitații: $n_e(r) = n_s \cdot e^{\frac{A}{R_{\odot}} \cdot (\frac{R_{\odot}}{r} - 1)}$

Frecvența armonică de oscilație pentru izbucniri de tip III se relaționează de densitate prin: $\nu_{pe} = \sqrt{\frac{e^2 \cdot n_e}{\pi \cdot m_e}}$

$$\rightarrow \nu_{pe}(r) = \nu_s \cdot e^{\frac{A}{2R_{\odot}} \cdot (\frac{R_{\odot}}{r} - 1)}$$

< □ ▶ < 同

DQC

• Un fascicul de electroni semi relativistic $v/c = 0.16 \pm 0.06$

I Geyseri Coronali

- la. Morfologia jeturilor recurente din regiuni active
- Ib. Proprietăţi termale şi supra-termale ale Geyserelor

Ic. Geyseri coronali și izbucniri radio de tip III

Id. Manifestări magnetice ale jeturilor coronale

 Acest tip de modelare se poate folosi pentru a determina sursele noilor fenomene switch-back descoperite in-situ de PSP.

Detalii în Paraschiv & Donea, 2019, ApJ.

nac

ld. Manifestări magnetice ale jeturilor coronale

Id. Manifestări magnetice ale jeturilor coronale

< 🗆 🕨

990

- Id. Manifestări magnetice ale jeturilor coronale

- Magnetograme LOS sunt nepotrivite pentru o astfel de analiză.
- De-proiectie sferică (Gary and Hagyard, 1990).
- Dizambiguare a polarității (Leka et. al, 2009).

Analiza și cuantificarea magnetogramelor sunt asemenea deschiderii unei cutii cu viermi. (日)

Jac.

- Id. Manifestări magnetice ale jeturilor coronale

x (arcsecs)

- Mlaştină penumbrală.
- Regiuni de străpungere a fluxului (flux-emergence).
 Fluxuri magnetice miscătoare (MMFs).

- Interfață de inversie a polarității (PIL).
- Câmpuri de boltă (canopy fields).

300 Corolar: A nu se folosi magnetograme -600 LOS la mai mult de \pm 100-150" față de centrul discului. naa

- Id. Manifestări magnetice ale jeturilor coronale

01:00

01:12

- Structuri torsionate la înălțimi joase există în extrapolări liniare libere de fortă.
- Extrapolările nu reprezintă realitatea fizică atunci când discutăm magnetismul solar.

la. Morfologia jeturilor recurente din regiuni activ

lb. Proprietăți termale și supra-termale ale Geyserelo

< D > < A > < B</p>

nac

- lc. Geyseri coronali și izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

• Un mecanism de tip stocare->eliberare a energiei s-a dovedit neconcluziv in cazul nostru din cauza incertitudinii din derivarea câmpurilor verticale.

I Geyseri Coronali Il Inversii de câmp magnetic coronal la. Morfologia jeturilor recurente din regiuni active

• • • •

lb. Proprietăți termale și supra-termale ale Geyserelor

990

- c. Geyseri coronali şi izbucniri radio de tip III
- Id. Manifestări magnetice ale jeturilor coronale

Declanșarea fotosferică a jeturilor

• Jeturile individuale sunt corelate cu fluxuri magnetice unice și distincte!

 Ambele scenarii propuse de literatură pentru declanşaarea jeturilor au fost observate acționând concomitent pentru a genera setul nostru de erupții.

Detalii în Paraschiv, Leka & Donea, 2020, ApJ.

I Geyseri Coronali Il Inversii de câmp magnetic coronal	Ia. Morfologia jeturilor recurente din regiuni active Ib. Proprietăți termale și supra-termale ale Geyserelor Ic. Geyseri coronali și izbuoniri radio de tip III Id. Manifestări magnetice ale jeturilor coronale

	J1	J2	J3	J4	J5	J6	J7	J8	J9	J10
EUV time [HH:MM]	00:49	01:13	01:19	02:11	03:52	13:04	17:06	21:19	22:24	22:55
HMI time [HH:MM]	00:48	01:12-0	1:24	02:00-02:12	03:48	13:00	17:00	21:12	22:24	22:48
Flux emergence		x	х		х			u	х	х
Flux cancellation	х			х		х	u			
B _Z strength [G]	$361\!\pm\!75$	378± -321±	76	535±79	348±76 -291±39	333±60	161±58	645±69 -277±63	408: -339	$^{\pm 53}_{\pm 56}$
MMF speed [km/s]	0.4			0.6		0.5	0.5			

 Din cauza cadenței de date nu am putut evalua dacă străpungerile de flux au fost cauza sau efectul jeturilor.

- 3 (+1 incert) evenimente au fost asociate cu fenomenul de anulare de flux.
- 4 (+1 incert) evenimente au fost asociate cu străpungerile de flux.

Geyseri Coronali: mici situri din penumbra regiunilor active ce persistă pentru multiple zile, au o conexiune cu coroana și sunt generatoare prolifice de jeturi solare. Stabilim că geyserele sunt surse de particule supra-termale, izbucniri radio, și calculăm că din punct de vedere energetic acestea sunt surse de microflares impulsive, pot conține structuri filamentare, și pot conserva helicitatea solară. Jeturile din geysere pot fi declanșate prin multiple scenarii de erupție, notabile fiind anularea și străpungerea de flux magnetic.
Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări.

500

🕕 I Geyseri Coronali

Il Inversii de câmp magnetic coronal

- Baze conceptuale și motivație
- Spectroscopie și cuantificarea zgomotului
- Schema de inversie
- Degenerări, Degenerări, Degenerări, Degenerări...

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări...

Definiții:

- Alinierea atomică este dată de anizotropia câmpului incident de radiație.
- Un câmp magnetic alterează alinierea atomică.
- Efectul Żeeman într-o aproximație de câmp puternic.
- Direcțiile sunt:
- X De-a lungul direcției de vizare. (nu va fi reprezentată în majoritatea proiecțiilor 2D)
- Y Orizontal; Direcția E-V
- Z Vertical; Directia N-S

Aplicații ale inversiilor coronale

- Natura undelor și propagarea undelor în coroană.
- Turbulență și accelerarea vântului solar lent in coroana joasă.
- Diagnostic pentru structuri deasupra limbului. Există bucle magnetice?
- CMEs, Studiul structurilor pre și post eruptive.
- Studii teoretice asupra polarizării liniilor coronale.

Data courtesy of T. Schad; M. Rempel; and P. Judge.

Sar

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări...

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, Degenerări.

Surse de incertitudine

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, Degenerări.

Adapted Seagraves & Elmore, 1994, SPIE

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări.

Sac

< < >> < <</p>

Spectroscopie în infraroșu la 1000-5000 nm

- Ioni: Fe XIII 1074.7nm, 1079.8nm, Si X 1430.1nm, Si IX 3934.3nm.
- Emisia probabil nu va fi constrânsă corect prin fitare cu Gausiene.
- Stokes V nu este de regulă recuperabil.

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului

Schema de inversie

Degenerări, Degenerări, Degenerări, Degenerări...

< □ > < 同 > < 三 >

< E

5990

э

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, Degeneră

> Ali & Paraschiv, 2021, in prep. ◆ □ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ゑ ◆ ♡ � (~

Cor. Line	Wave.	ID	cal. Line	Wave.	Rel. I	Comment
		O3	Si I	1072.74nm	0.44	Very Strong line; too close to slit margin
		С	CI	1072.95nm	0.60	Strong absorption line
		O2	[?]	1074.17nm	0.91	very weak line. No candidate in NIST.
		Α	[2]	1074.35nm	0.68	Strong absorption. Not in NIST
Fe XIII	1074.7nm	X1	Fe I	1074.46nm	0.82	weak line
		-	-	-		unusable due to blend with cor. Fe XIII line
		X2	Si I	1074.94nm	0.38	strong line
		-	-	-		unusable due to blend with cor. Fe XIII line
		В	Fe I	1075.30nm	0.75	Not very prominent but might be usable
		O1	CI	1075.40nm	0.85	weak line; possible blend issue
	1079.8nm	Α	Fe II	1078.30nm	0.69	Strong absorption line
		В	Si I	1078.45nm	0.63	Strong absorption line
		C	Si I	1078.68nm	0.39	Very strong line
		X1	[?]	1079.61 nm	0.89	weak line. Not in NIST
re Am		-		-		unusable due to blend with cor. Fe XIII line
		X2	[?]	1079.95nm	0.41	strong line. Not in NIST
		-	11	-		unusable due to blend with cor. Fe XIII line
		01	Fe II?	1080.36nm	0.88	Weak line; (Hard to identify, possibly Fe II)
		O2	Ne I	1080.63nm	0.91	very weak line
		D2	[?]	1081.08nm	0.56	Strong absorption 2-line set; Not in NIST
		D1	Mg I	1081.11nm	0.43	Strong absorption 2-line set; treat as pair
		O3	Fe I	1081.83nm	0.77	strong-ish line; close to slit end
Si X	1430.1nm	Α	Fe I	1427.5nm	0.21	Separable line in tough range; needs specialized fitting proce
		B1	Fe I[?]	1429.03nm	0.47	Pair of close lines, fit together
		B2	Ti I[?]	1429.05nm	0.57	NIST determinations uncertain; Needs custom fitting.
		X1	Fe I	141430.30nm		not usable due to overlap
		C1		3926.02nm	0.71	not in NIST; couple with N ₂ O band.
Si IX	3934.3nm	C2	N_2O	3926.26nm	0.06	Molecular absorption for C1
		X3	[?]	3928.66nm	0.67	Not usable due to proximity to molecular band
		Α	N_2O	3929.25nm	0.08	Molecular absorption band;
		01		3931.17nm	0.90	Very weak; not in NIST or BASS2000
		X1	N_2O	3933.83nm	0.13	absorption band; not usable due to overlap
		X2	N_2O	3935.38nm	0.15	absorption band; not usable due to overlap
		в	N_2O	3938.50nm	0.22	Molecular absorption band
		O2	[?]	3940.80nm	0.84	weak line. not in NIST
		D1	[?]	3941.47nm	0.69	not in NIST; couple with N ₂ O band.
		D2	N_2O	3941.66nm	0.29	Molecular absorption for D1

Cuantificarea zgomotului

: 200

I Geyseri Coronali
 Spectroscopie și cuantificarea zgomotului
 schema de inversie
 Schema de inversie
 Decenerări Decenerări

Cuantificarea zgomotului

: 200

Cuantificarea zgomotului

: DQC

Cuantificarea zgomotului

: 200

Cuantificarea zgomotului

: 200

Cuantificarea zgomotului

: DQC

Cuantificarea zgomotului

: 990

Cuantificarea zgomotului

: 200

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, ...

Geometrie, simetrii, degenerări

Plane of the sky x = 0

・ ロ ト ・ 同 ト ・ ラ ト ・ ラ ト

500

- Soluțiile de aliniament atomic σ_0^2 depind doar de distanța față de limb.
- Condițiile din punctele Q și P sunt echivalente in termeni de σ_0^2 .
- Deci profilele Stokes IQUV la Q pot fi rotite către P. După ce căutam soluția în baza de date, observația poate fi de-rotită cu $-\alpha$.

Vezi Casini & Judge (1999), ApJ, și Judge, Casini, & Paraschiv (2021), ApJ.

 </

Jac.

ъ

O bază de date de calcule atomice pentru polarizare

- O bază de date pentru profile Stokes IQUV este calculată folosind CLE-DB pentru toate punctele $\mathbf{r} = (x, y, z)^T$ în lungul direcției radiale(y).
- In teorie ar trebui rezolvat un spațiu de parametri constând în:
- $x, y, z, T_e, n_e, \mathcal{A}, \mathcal{B}, \theta_B, \chi_B, v_x, v_T.$
- Putem reduce calculele la doar: $x, n_{\theta}, \theta_{B}$ (via $\vartheta \& \varphi$).
- Configurație CLE-DB: Numărul total de calcule pentru 81 de poziții radiale y $N_C = n_x \cdot n_{n_e} \cdot n_{\varphi} \cdot n_{\vartheta} = 7.9 \times 10^8$

quantity	number	range
n_e (electron density in cm ⁻³)	$n_{n_e} = 10$	$[200.0\ 100\ 50.0\ 15.0\ 5.0\ 2.5\ 1.0\ 0.5\ 0.1\ 0.01]n_0(r)$
y-axis (radial, units R_{\odot})	$n_y = 81$	1.0 ightarrow 1.256
x-axis (LOS, units R_{\odot})	$n_{x} = 60$	-1.5 ightarrow 1.5
φ (azimuth in $z = 0$ plane)	$n_{arphi} = 180$	$0 ightarrow 2\pi$
ϑ (polar angle from +ve z – axis)	$\dot{n_{\vartheta}} = 90$	$0 ightarrow \pi$

CLE și **CLE-DB** sunt singurele coduri disponibile pentru transfer radiativ și sinteză spectrală pentru linii spectrale de emisie de tip dipol magnetic M1. Versiunea curentă se poate obține la cerere contactându-mă.

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, Degenerări

500

Algoritmul inversiei

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆

Produse pentru comunitatea DKIST

1. Calibrări și spectroscopie:

Stokes IQUV calibrate în intensitate absolută și Doppler.

Dispersia totală a liniei.

Dispersia supra-termală a liniei.

Gradul de polarizare totală.

Gradul de polarizare liniară. $\frac{L}{l} = \frac{\sqrt{Q^2 + U^2}}{l}$

2. Determinări de câmp magnetic:

A. Observații cu o linie. -> Câmpul magnetic LOS (Integrat de-a lungul liniei de vizare) Câmpul magnetic LOS: $B_{LOS} = |B| \cos(\Theta_B)$ (Determinat analitic, vezi Plowman 2014, ApJ) Unghiul de azimut magnetic: $\chi_B = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q}\right)$

B. Observații cu 2 linii \rightarrow Câmpuri magnetice vectoriale 3D (în plus față de punctul A). Puterea câmpului magnetic |B|.

Unghiul magnetic LOS (Θ_B)

Poziția in spațiu 3D a structurii dominante.

Densitatea locală a plasmei (ne)

- Direcția lui **B** provine din fitul cu baza de date prin φ , ϑ . $\cos \theta_B = \sin \vartheta \cos \varphi$.
- Puterea câmpului magnetic $B = |\mathbf{B}|$ provine din rația dintre V_{obs}^* / V_{db}^* , unde $|B_{db}^*| = 1$ G.
- $|\mathbf{B}|$ împreună cu θ_B and χ_B pot fi transformați apoi intr-o formă carteziană, e.g. B_x, B_y, B_z .

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, ...

A. R. Paraschiv

Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări...

Sac

3) 3

A. R. Paraschi

	l Geyseri Coronali Il Inversii de câmp magnetic coronal						Baze conceptuale și motivație Spectroscopie și cuantificarea zgomotului Schema de inversie Degenerări, Degenerări, Degenerări, Degenerări					
$\Theta_{LOS} = 91$	0 0 0 0 0	C 4341719 4422571 4438919 4325371 4422719 4341571	chi2 +1.16e-01 +1.16e-01 +1.16e-01 +1.16e-01 +1.16e-01 +1.16e-01	Ne +7.82 +7.82 +7.78 +7.78 +7.81 +7.81	y +1.21 +1.21 +1.21 +1.21 +1.21 +1.21	x -0.10 +0.10 +0.20 -0.20 +0.15 -0.15	phi +2.00 +358.00 +2.00 +358.00 +2.00 +358.00	theta +58.00 +122.00 +58.00 +122.00 +58.00 +122.00	B +1.00 +1.00 +1.00 +1.00 +1.00 +1.00	POS AZ +82.48 -175.36 +82.48 -175.36 +82.48 -175.36	LOS THETA +114.40 +60.41 +114.40 +60.41 +114.40 +60.41	
Θ _{LOS} = 59	0 0 0 0 0 0	C 5540520 5167770 5216370 5491920 5508120 5508120	chi2 +1.16e-01 +1.16e-01 +1.16e-01 +1.16e-01 +1.16e-01	Ne +7.45 +7.45 +7.66 +7.66 +7.59 +7.59	y +1.08 +1.08 +1.08 +1.08 +1.08 +1.08	× +0.60 -0.60 -0.45 +0.45 +0.50 -0.50	phi +2.00 +358.00 +2.00 +2.00 +358.00	theta +60.00 +120.00 +60.00 +60.00 +60.00 +120.00	B +1.00 +1.00 +1.00 +1.00 +1.00 +1.00	POS / -163.7 -5.7! -5.7! -163.7 -163.7 -5.7!	AZ LOS THETA 7 +82.71 5 +54.91 5 +54.91 7 +82.71 7 +82.71 5 +54.91	
$\Theta_{LOS} = 105$	0 0 0 0	C 5167769 5540521 5475571 5232719	chi2 +1.17e-01 +1.17e-01 +1.17e-01 +1.17e-01	Ne +7.56 +7.56 +7.92 +7.92	y +1.04 +1.04 +1.04 +1.04	× +0.60 +0.35 -0.35	phi +358.00 +2.00 +358.00 +2.00	theta +118.00 +62.00 +122.00 +58.00	B +1.00 +1.00 +1.00 +1.00	POS A2 +36.22 -44.94 -175.36 +82.48	2 LOS THETA +166.44 +72.08 +60.41 +114.40	

Paraschiv & Judge, 2021, in prep.

◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ▶

Degenerarea Dima & Schad, 2019

Dima & Schad, 2019, ApJ oferă o soluție aparent mai puțin complexă la problema noastră, bazată pe o determinare pur analitică, unde sunt necesare observații a 2 linii.
Aceștia au descoperit că în cazul în care factorii Lande g_J a două linii sunt identici, atunci nu se poate obține o soluție ca de exemplu:

For XIII ${}^{3}P_{1} \rightarrow {}^{3}P_{0}$, $\lambda = 1.0747\mu \ g_{J} = 1.5$ For XIII ${}^{3}P_{2} \rightarrow {}^{3}P_{1}$, $\lambda = 1.0789\mu \ g_{J} = 1.5$ Unde $g_{J} \simeq \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)}$, for $J \neq 0$.

• Autorii au sugerat folosirea:

Si X ${}^{2}P^{o}_{3/2} \rightarrow {}^{2}P^{o}_{1/2}, \ \lambda = 1.430 \mu, \ g_{J} = 0.66$

• Totodată, soluția lor era ambiguă la 90°, iar noi așteptam o ambiguitate la 180°.

• Dupa multiple iterații, implicând calcule relativiste pentru g_J , și rezolvarea de multiple ori a geometriei, etc. **am descoperit că discutăm despre lucruri diferite**.

• Am invățat că:

- Aproximarea LS este pe departe de a fi perfectă.

- Soluția analitică nu are acces la anizotropia atomului, iar Θ_B rebuie calculat prin:

$$\sin^2 \Theta_B \approx \frac{2}{3} \frac{\epsilon \ell_1 v_1}{v_1 i_2 \overline{g}_2 \lambda_2 - v_2 \overline{g}_1 \lambda_1}$$

- Folosirea liniilor din același ion reduce nevoia de a calcula \mathcal{A} .

- GEOMETRIA CONTEAZĂ!

Vezi, Schiffmann et al. 2021, in rev. Judge, Cassini, & Paraschiv, 2021, ApJ

Sar

Concluzii și planuri pentru viitor

- Estimările ale locației 3D și ale densităților structurilor dominante sunt importante!
- Putem combina multiple linii din atomi diferiți?
- Putem discerne dacă linii diferite emit din regiuni diferite de-a lungul liniei de vizare?
- Producerea magnetogramelor coronale va necesita o disambiguizare a polarității recuperate prin baza de date.

Observațiile spectroscopice în plasmă transparentă sunt asemenea cu a privi soarele prin ochelari de cal.

Vă Multumesc!

Contact: arparaschiv@nso.edu

Oameni fără de care astăzi nu aș fi aici (alfabetic):

Alessandro Bemporad Paul Cally Doina Călugăru Alina Donea Diana Ionescu Phil Judge K.D Leka Daniela Lăcătuş Charlie Lindsey Marilena Mierlă Elena Moise Georgeta Muntean(Mariş) Ilia Roussev Kevin Reardon Luciano Rodriguez Mircea Rusu Dan Seaton Ovidiu Teşileanu Ovidiu Văduvescu

< ロ > < 同 > < 三 > < 三 >

Jac.

ъ

Suplementar: Funcții de răspuns pentru SDO-AIA

5900

(日)

Suplementar: Fascicule supra-termale și nano-erupții

A. R. Paraschiv

• A. Diferențele de densitate din structuri suprapuse vor influența semnalul Stokes.

• B. Metoda standard de determinare a densităților folosind rația dintre Fe XIII 1074.7/1079.8 nm este problematică și nu se poate aplica direct. Rația liniilor de Fe XIII se poate aplica doar intr-un regim determinat de densități ce nu acoperă complet plaja de plasmă coronală.

 $N_e \approx 5 \ 10^6 \ - \ 2 \ 10^8 cm^{-3}.$

(Flower & Pineau des Forets, 1973) Alta calcule similare au setat plaja de aplicabilitate la

 $N_e \approx 1 \ 10^6 \ - \ 1 \ 10^{10} \ cm^{-3}$. (Chevalier & Lambert, 1969)

э.

=

A. R. Paraschiv

990

