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Model Solar System)
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Decision-making

In many areas, decision-making is affected by the difficulty in producing
reliable forecasts. The behavior of financial markets, consumers or weather
phenomena, the evolution of an ecosystem or the movement of certain
celestial bodies provide some examples of unpredictable events that have
an impact on human activity.
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Prediction

Some developments of mathematics can help reduce this unpredictability
or, at the very least, analyze it from a strategic point of view. The theory
of probability plays such a role but so do fluid mechanics in the study of
turbulence, or dynamic systems in the study of so-called chaotic
phenomena, which belong to a specific class of unpredictable phenomena.

Historically, the theory of dynamic systems did not immediately provide
forecasting tools.
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Henri Poincaré - The royal prize

King Oscar II of Sweden and Norway (1872-1907), announced a
competition for a prize of 2500 kroner together with a gold medal to
celebrate his 60th birthday to anyone who could prove that the Solar
system was stable and would not fly apart at some future date. Henri
Poincaré (1854-1912), who was a brilliant mathematician and physicist,
took on the challenge and won the prize for his paper ”On the problem of
three bodies and the equations of equilibrium”. The prize competition was
announced in Acta Mathematica, written by the Swedish mathematician
Gösta Mittag-Leffler.
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Henri Poincaré - The unpredictable

When Mittag-Leffler made his final
presentation to the king on 20
January 1889, only the brief
summary from Weierstrass was
enclosed in the general report.
In July 1889, Mittag-Leffler decided
that it was time to take action and
print Poincaré’s dissertation. He was
a little concerned by a technical
objection that had been raised.
Poincaré thought the objection could
easily be overcome, but as he delved
deeper, he had a sudden attack of
panic... He recognised chaos as an
almost impossible topic to analyse
mathematically. But how?
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Poincaré - From stability...

On the last day of November 1889, a telegram reached Mittag-Leffler.
Poincaré briefly told him to stop the presses. He had found an error: “It is
not true that the asymptotic surfaces are closed”. Trajectories near a
saddle point did not converge. His proof of stability was wrong!
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Poincaré - ...to chaos

Mittag-Leffler decided to keep his confidence in Poincaré and let him work
out a revised version. He was assiduous in trying to get all the distributed
copies back, without revealing any details. Poincaré was asked to pay for
the first printing, which he accepted. The expenses amounted to over
3500 kroner. After intense work in December, and over Christmas and
New Year, Poincaré was ready to submit a substantially revised memoir on
5 January 1890. Instead of stability for the restricted three-body problem,
he had come to the inevitable conclusion that chaotic motion could occur.
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Henri Poincaré’s conclusions

Poincaré (1890) proved that unlike the two-body problem that is
integrable and thus its solutions are completely understood, the three-body
problem is not integrable. The trajectories of the bodies depend on their
masses, coordinates and velocities at the beginning. In reality, the motion
can look very different if the initial conditions are modified, even by minor
changes. In most cases, trajectories of the three-body system are chaotic
(i.e. non-periodic), unpredictable. In some special cases, there indeed exist
periodic orbits. Poincare indicates that we must use numerical algorithms
to solve this problem.
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Historical conclusions

Lorenz (2006) found that computer-generated trajectories of chaotic
systems are also sensitive to algorithms:

different numerical algorithms might give distinctly different
computer-generated trajectories of chaotic systems after a long time.
Consequently, we look to perform numerical simulations to describe
the motion. This is made by numerical integrations in which the
accuracy of the computer and the calculations are essential.
The goal is to utilize an adequate method for obtaining precise
solutions over a long time.
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Problem with numerical calculations

needs sophisticated algorithms to avoid build up errors;
difficult to parallelize;
typical calculations last several months;
roundoff errors!

Finance - new Vancouver stock exchange index
was initialized in 1982 at 1000. After 22 months
the index stood at 524.881 despite a rising market.
Gulf War (1991) - Patriot missile defense system
converted clock steps of 0.1s to decimal by multiplying
by a 22-bit binary number. After 100 hours the
accumulated roundoff error was 0.3s, which led to
failure to intercept a Scud missile, resulting in 28 deaths.

Hence, always use highest possible precision.
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Problem at collsion
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What is happening at close encounters?

At the collision, the equations of motion show singularities. When the
distance between the bodies approaches zero (close encounters), then
the forces acting between particles approach infinity, and this event
produces sharp bends of the orbit. The numerical precision after the
collision will be worse because of the round-off and truncation errors.
At close encounters, where not actually singularities occur, we can use
time-step control decreasing the size of the time-steps. The numerous
small-time steps will introduce numerical errors. In contrast, all
solutions can be determined analytically or numerically if the
singularities are eliminated (regularization method).
The removal of the singularity from the Hamiltonian does not
necessarily imply the absence of singular terms in the equations of
motion. The continuation of the orbit after close encounters
(collision) is not feasible since the solution encounters the singularity
present in the problem.
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Close approach of comet Oterma

Orbit of Saturn, Comet 39P/Oterma, Jupiter. a. Before 1930; b.
1920-1950; 1945-1983
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39P/Oterma close approaches to planets

(Rebound)
1963-Apr-12 Jupiter 0.095 AU 2011-Jun-03 Saturn 1.014 AU

2025-Jan-15 Jupiter 0.888 2155-Feb-21 Jupiter 0.771
2168-Oct-03 Saturn 1.933 (NASA Horizon)
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About the capture of comet Oterma

a. Capture of Comet 39P/Oterma; b. Close distance between 1958-1968;
Close approach between 1958-1968.

See: Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross: Resonance and capture
of Jupiter comets, Celestial Mechanics and Dynamical Astronomy 81(1-2), p.
27-38, 2001.
Szenkovits, F., Makó, Z., Csillik, I., Bálint, A.: Capture model in the restricted
three body problem. Pure Mathematics and applications 13(4), p. 463-471, 2002.
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Resonant capture

Why is Oterma not colliding with Jupiter? Resonance transition -
interior-exterior resonances - outside 2:3, inside 3:2. (See Theory of
Tube Dynamics, lobe dynamics, transport theory for minor bodies.)
Why don’t Pluto and Neptune collide? Resonance 3:2 ensures that
Pluto only crosses Neptun’s orbit, when it is 90 degrees away from
Neptune.

Early in the Solar system there was planetesimals (debris) between
planets. Ejection of this debris by Neptune caused its orbit to migrate
outwards.
If Pluto were initially in a circular orbit outside Neptune, it was
captured into 3:2 resonances, and its eccentricity and inclination grow
as Neptune continues to migrate outwards.
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Remove the singularity

The numerical difficulties associated with integrations of close
two-body encounters can be avoided by introducing regularizing
transformations which remove the singularity.

In 1765, Euler proposed regularizing transformations when studying
the rectilinear motion.
Regularization is defined as the elimination of singularities occurring
in the equations of motion by properly selected variables.
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LC - Kepler problem vs. Harmonic oscillator

Under Levi-Civita’s transformation of coordinates and time (x = u2 − v2,
y = 2uv , dt/ds =

√
x2 + y2), a Kepler problem in (x , y) changes into a

harmonic oscillator in (u, v).
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Configuration space vs phase space

Lagrangian dynamics
Points in the n-dim configuration
space correspond to given configu
rations. The coordinates of a point
are the n generalized coordinates qk
of a dynamical system k = 1, n.
qk = qk(t, q0

k , q̇0
k)

Hamiltonian dynamics
Points in the 2n-dim phase space
correspond to definite state of the
system. The coordinates of a point
are the n generalized coordinates qk
and the n generalized momenta pk of
a dynamical system k = 1, n.
(qk , pk)
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LC - Double angles at the origin R3BP

Hill’s region configurations for the CR3BP system when µ = 0.3. The lines
depict the Zero Velocity Curves (ZVCs) in the CR3BP and in the
LC-regularized CR3BP. The contours denote values of the Jacobi integral.
The surface also only predicts what regions can not be entered, not the
shape of the trajectory within the surface. 3.05-3.09 - small forbidden
region around L4 and L5 start to grow, 3.1 - the neck around L1 and L3 are
open, 3-4 - the neck around L1 is open, 4-10 decrease the ZVC around the
two center, 10-21 - No transit orbits among the three regions are possible.
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McGehee - Local regularization in R3BP

Levi-Civita method remove the singularity by introducing the parametric
u-plane using the simplest mapping of the u plane onto the x-plane
satisfying the requirement to double angles at the origin an be conformal
elsewhere.

Mercé Ollé, Oscar Rodriguez, Jaume Soler: Local regularization in the
R3BP and ejection-collision orbits.

Iharka Szücs-Csillik Numerical integrators in dynamical astronomy: an overview 23



Astronomical Institute of Romanian Academy - AIRA Seminar

McGehee’s regularization R3BP
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McGehee’s regularization 2BP

r = |q|
θ = atanq2

q1

u = ṙ =
q1p1 + q2p2

|q|
v = r θ̇ =

q1p2 − q2p1
|q|

x = u
√

r
y = v

√
r

dt
ds = r3/2

r ′ = rx
θ′ = y
x ′ = x2/2 + y2 − 1
y ′ = −xy/2

Mcol = {(r , θ, x , y)/r = 0, θ ∈ S1, x2 + y2 = 2}
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KS - regularization in 3D

As we know, the differential equations of motion of relative two-body
problem r̈ = −µr

r3 are singular at r = 0. Therefore, in a fixed reference
frame, in space, with relative Cartesian coordinates q = (q1, q2, q3), the
two-body problem is described by the Hamiltonian as

H(qi , pi) =

3∑
i=1

p2
i

2 − µ√
3∑

i=1
q2

i

, (1)

with the corresponding canonical equations:

q̇i = pi , (2)
ṗi = − µqi

(q2
1 + q2

2 + q2
3)

3/2 = −µqi
r3 ,

where qi and pi , i = 1, 3 are the canonical coordinates in physical space.
Iharka Szücs-Csillik Numerical integrators in dynamical astronomy: an overview 26



Astronomical Institute of Romanian Academy - AIRA Seminar

KS - transformations

In order to achieve the regularization in space, we introduce the L(Q) -
KS-matrix, which is orthogonal LT (Q)L(Q) = rE , where E is the identity
matrix, and LT is the transpose of L matrix, Q is the new coordinates in
parametric space:

L(Q) =


Q1 −Q2 −Q3 Q4
Q2 Q1 −Q4 −Q3
Q3 Q4 Q1 Q2
Q4 −Q3 Q2 −Q1

 (3)

As a first step, we introduce the KS transformation, which transforms the
(q1, q2, q3, p1, p2, p3) coordinates and momenta in 3-dimensional physical
space into the (Q1,Q2,Q3,Q4,P1, P2,P3,P4) new coordinates and
momenta in 4-dimensional parametric space:

q = L(Q) · Q, (4)

where q4 = 0 = Q4Q1 − Q3Q2 − Q2Q3 + Q1Q4 is the bilinear relation.
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KS - regular equations

The new Hamiltonian derived from the KS transformations is:

HKS =
1
8 ·

4∑
i=1

P2
i

r − µ

r , r =
4∑

i=1
Q2

i . (5)

In the second step, we adopt the new fictitious time s as a time
transformation:
dt
ds = r . (6)

Consequently, the new canonical, regular equations become:
dQi
ds = Pi/4 , (7)
dPi
ds = 2HKS2Qi , i = 1, 4 ,

where the energy HKS is constant.
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Why to apply KS regularization?

Increasing the order of the new canonical equations of motion (7) is
not a disadvantage from the numerical point of view, because the
regularized equation are more efficient. The KS transformation
regularizes the corresponding equations of motion allowing us to
understand the near-collision dynamics.
The KS transformation blows up the motion’s area near the
singularity, and slows down the motion in the parametric plane, using
the fictitious time.
The KS regularization is a simple regularization model for the study
of motion in physical space. It can be used as a first approximation in
regularizing studies.
Using the generalization of the KS-coordinate transformations one
can study the orbit’s shape of a given celestial object even with small
eccentricity around the singularities.
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Solar system

Copernicus (1543), Kepler (1619)
Newton (1687), Euler (1765)
Poincaré (1890), Lorenz (2006)

Collision-singularities-regularization
The question of the stability of the
Solar System is one of the oldest
problems in physics.
A collision with another planet or
the Sun is possible in less than
5 billion years (Gyr), before the end
of the life of the Sun when it
becomes a red giant.
Mercury’s orbit is unstable as found
out in earlier studies.
Mercury will be expelled (30 Myr).
(Laskar, Gastineau, 2009;
Mikkola, Lehto, 2022).

Batygin-Brown (2016) Evidence for a distant giant planet in the Solar system (200 AU).
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Precise solution over a long time

We look to perform numerical simulations to describe the motion.
This is made by numerical integrations in which the accuracy of the
computer and the calculations are essential.
The goal is to utilize an adequate method for obtaining precise
solutions over a long time.
For long-term integrations, the most commonly used are symplectic
integrators. Symplectic schemes incorporate the symmetries of
Hamiltonian systems, and as a result, usually conserve the energy and
angular momentum better than nonsymplectic integrators. In
particular, the angular momentum is usually conserved up to a
roundoff error in symplectic integrators.
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Known Definitions: SI and Hamiltonian

In mathematics, a symplectic integrator (SI) is a numerical integration
scheme for Hamiltonian systems.
Formally, a Hamiltonian system is a dynamical system characterised by the
scalar function H(q,p, t), also known as the Hamiltonian.
The state of the system, r , is described by the generalized coordinates p
and q, corresponding to generalized momentum and position respectively.
Both are real-valued vectors with the same dimension N. Thus, the state is
completely described by the 2N-dimensional vector r = (q,p) and the

evolution equations are given by Hamilton’s equations:

dp
dt = −∂H

∂q ,

dq
dt = +

∂H
∂p .

The trajectory r(t) is the solution of the initial value problem defined by
Hamilton’s equations and the initial condition r(t = 0) = r0 ∈ R2N .
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Known Properties of SIs

The Hamiltonian dynamical system has a symplectic structure, which
consequence is that an infinitesimal phase space volume is preserved.
A corollary of this is the Liouville’s theorem: on a Hamiltonian
system, the phase-space volume of a closed surface is preserved under
time evolution.
Symplectic integrator form the subclass of geometric integrator,
which is a numerical method that preserves geometric properties of
the exact flow of a differential equation.
Many of these geometric properties are of crucial importance in
physical applications: preservation of energy, momentum, angular
momentum, phase space volume, symmetries, time-reversal symmetry,
symplectic structure and dissipation are examples.
Geometric integrators are canonical transformations. They are widely
used in nonlinear dynamics, molecular dynamics, discrete element
methods, accelerator physics, plasma physics, quantum physics, and
celestial mechanics.
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Canonical integration technique - 1

Symplectic map generates phase space behavior, which is close to that of
original system.
Consider a system of differential equations governed by the Hamiltonian
H = p2/2 + V (q, t). Its solution is given by the functions q(q0,p0, t) and
p(q0,p0, t).
Due to the canonical character of these equations of motion constitutes a
canonical transformation (symplectic map) from initial conditions at t = 0
to the state vector at time t: (q, p) = M(t)(q0, p0).
If t is small, can this map be found approximately to some given order in t?
The n-th order symplectic map is (q, p) = Mn(t)(q0, p0), where n is the
order of the map ‖M(t)− Mn(t)‖ = O(tn+1).
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Canonical integration technique - 2

Let (q1, p1) the new coordinates. The convenient form for generating
function of the canonical transformation (q, p) → (q1, p1) is that involving
new coordinates and old momenta: F3(q1, p, t) = −q1p + G(q1, p, t).

q = −∂F3
∂p = q1 − Gp , p1 = −∂F3

∂q1
= p − Gq1 ,

H1 = H +
∂F3
∂t = H + Gt .

These equations suggest to select G = −{p2/2 + V1(q1, t)}t, so that

p1 = p − f (q1, 0)t, f (q, 0) = −∂V (q, 0)
∂q ,

q = q1 + pt,
H1 = V (q1 + t(p1 + f (q1, t), t), t)− V (q1, 0).

And expanding on the small parameter t:
H1 = tVt(q1, 0)− tp1f (q1, 0) + O(t2) →
q1=const+O(t2), p1=const+O(t2).
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Leapfrog method schema

The leapfrog method is numerically integrating differential equations as
the form of canonical equations of the two-body problem, namely

q̇i = pi , ṗi = − µqi

(q2
1 + q2

2 + q2
3)

1
2
= −µqi

r ,

where qi and pi , i = 1, 3 are the canonical coordinates in physical space.
The leapfrog integrator solves the second-order ordinary differential
equations directly, it is reversible and it approximately conserves energy.
The leapfrog schema for two-body problem explicitly with h step size can
be written as:

qj
i = qj−1

i + hpj−1
i −

h2 · qj−1
i

2((qj−1
1 )2 + (qj−1

2 )2 + (qj−1
3 )2)

3
2
, j = 0, tn (8)

pj
i = pj−1

i − h
2

(
qj−1

i

((qj−1
1 )2 + (qj−1

2 )2 + (qj−1
3 )2)

3
2
+

qj
i

((qj
1)

2 + (qj
2)

2 + (qj
3)

2)
3
2

)
,(9)

where i = 1, 3, j is the time step, and tn the final time.
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Neri’s 4th order symplectic integrator

The Neri’s fourth-order symplectic integrator schema explicitly is given by:

qk
i = qk−1

i + hckpk−1
i , (10)

pk
i = pk−1

i − hdk
qk

i

((qk
1 )

2 + (qk
2 )

2 + (qk
3 )

2)
3
2
, i = 1, 3, k = 1, 4,

where the value of the coefficient ck , dk , k = 1, 4 are

c1 = c4 =
1

2(2 − 21/3)
, c2 = c3 =

1 − 21/3

2(2 − 21/3)
, (11)

d1 = d3 =
1

2 − 21/3 , d2 =
−21/3

2 − 21/3 , d4 = 0.

Note that the Neri symplectic integrator is suitable for an autonomous
Hamiltonian system which can be split into two integrable parts of kinetic
and potential energies (Separable Hamiltonian system).
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Neri’s 4th SI with 9 stages

The value of the coefficient ck , dk , k = 1, 10 are:

d1 = 0.0465; d2 = 0.1549; d3 = 0.3197; d4 = −0.1929;
c1 = 0.1289; c2 = 0.1090; c3 = −0.0138; c4 = 0.1837;
d5 = 0.5 − d1 − d2 − d3 − d4; d6 = d5; d7 = d4;
d8 = d3; d9 = d2; d10 = d1; c6 = c4; c7 = c3;
c5 = 1 − 2 ∗ (c1 + c2 + c3 + c4); c8 = c2; c9 = c1; c10 = 0.

Note that schemes of order 6 or higher require more stages than
compositions, and only fourth-order methods seem promising. Including
additional stages more efficient methods can be obtained.
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Non-separable symplectic integrators

H(Q,P) = (Q2 + 1)(P2 + 1)/2.

What about the non-separable Hamiltonian systems? Such as a finite-dimensional
representation of the nonlinear Schrödinger equation, nearly integrable systems in
action-angle coordinates for astrophysical examples, charged particle dynamics,
molecular dynamics with thermostats, classical systems with post-Newtonian correction
that approximates general relativity effects, etc.
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Kepler problem and CR3BP

The Kepler problem using RK 4th order and Neri’s 4th order symplectic
integrator.
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Recent studies

Nowaday, there is an increasing need for a precise long-term
integration. The first long-term direct numerical integration (without
averaging) of a realistic model of the Solar System, together with the
precession and obliquity equations, was performed by Quinn et al.
(1991) over 3 Myr.
The orbital motion of the full Solar System was computed over 100
Myr using a symplectic integrator with mixed variables (Wisdom and
Holman, 1991).
Following the improvement of computer technology, long-term
integrations of realistic models of the Solar System have been
improved (Ito and Tanikawa, 2002).
Now it is possible to integrate the motion of the Solar System over
time periods of more than 5 Gyr, which is comparable to its age or
expected lifetime (Laskar and Gastineau, 2009; Laskar and Robutel,
2001; Mikkola and Lehto, 2022).
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Near Future

It must be emphasized that high-performance computers and artificial
intelligence (including machine learning) play significant roles in
performing the investigation of the n-body problem. In the following, I will
present briefly some integrators, codes, software packages that analysing
also close encounter problems (see Szucs-Csillik, RoAJ 2022):

DROMO (Peláez et al., 2007; Bau et al., 2011).
FCIRK16 (Antonana et al., 2022).
NBODYx (Aarseth, 2003).
MSTAR (Rantala et al., 2020).
FROST (Rantala et al., 2021). BIFROST (Rantala et al., 2022).
Swifter.
STARLAB (Anders et al., 2009).
REBOUND (Rein and Tamayo, 2015; Rein and Spiegel, 2015).
Orbfit (Gronchi et al., 2010).
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Sample animation of many-body problem

Created with the STARLAB toolset (1024 bodies).
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2023 DW - Asteroid

”We’ve been tracking a new asteroid named 2023 DW that has a very
small chance of impacting Earth in 2046,” said NASA Asteroid Watch on
its Twitter.
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2023 DW - NASA-Jet Propulsation Laboratory
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2023 DW. Neo/Aten (Orbital elements)

Discovered by Georges Attard and Alain Maury in San Pedro de Atacama
at 26 February 2023.
Epoch 2023-Feb-25 (JD 2460000.5)
Semi-major axis=0.82 AU
Perihelion=0.49 AU
Aphelion=1.14 AU
Eccentricity=0.397
Inclination=5.81 deg
Longitude of ascending node=326.14 deg
Argument of perihelion=40.45 deg
Mean anomaly=120.04 deg
Orbital Period=271.16 days
Time of perihelion=2022-Nov-26
Mean diameter=46 meter
Absolute magnitude=24.3.
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2023 DW - Valentine Asteroid trajectory
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2023 DW - distance with Rebound

Minimum distance (0.053067 AU) occured at time: -55.102510 years: 1968-02-14

Minimum distance (0.032505 AU) occured at time: 22.899290 years: 2046-02-14
Earth-Moon distance = 0.002569 AU
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2023 DW - Valentine Asteroid trajectory
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2023 DW - distance with Neri4

Minimum distance (0.01 AU) occured at time: -53.7274 years: 1970

Minimum distance (0.0302 AU) occured at time: 60.7168 years: 2083
Earth-Moon distance = 0.002569 AU
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News of the weekend - 2023 DZ2

2023 DZ2 is an asteroid roughly 70 meters in diameter, classified as a
near-Earth object of the Apollo group, and originally a Virtual Impactor
(VI). It was first observed on 27 February 2023, when it was 0.11 AU (16
million km) from Earth, with the Isaac Newton Telescope by Ovidiu
Vaduvescu, Freya Barwell, and Kiran Jhass (ING and University of
Sheffield student support astronomers) within the EURONEAR project.

On 2023-03-21 I observed asteroid 2023 DZ2 remotely at 0.355-m
telescope of Abbey Ridge Observatory (Canada)
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2023 DZ2. Neo/Apollo (Orbital elements)

Discovered by Euronear at 27 February 2023.
Epoch 2023-Feb-25 (JD 2460000.5), Time of perihelion=2023-Apr-04
Mean diameter=70 meter, Absolute mag.=24.2, Apparent mag.=10.

Semi-major axis=2.15 AU
Perihelion=0.99 AU
Aphelion=3.31 AU
Eccentricity=0.53
Inclination=0.08 deg
Longitude of asc. node=187.91 deg
Argument of perihelion=5.96 deg
Mean anomaly= 348.67 deg
Orbital period = 3.16 years

Semi-major axis=2.08 AU
Perihelion=0.99 AU
Aphelion=3.16 AU
Eccentricity=0.52
Inclination=0.002 deg
Longitude of asc. node=-3.03 deg
Argument of perihelion=0.17 deg
Mean anomaly= 6.19 deg
Orbital period = 3 years
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2023 DZ2 - trajectory (Rebound)
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2023 DZ2 distance to Earth (Rebound)

Minimum distance (0.03 AU) occured at time: -0.04 years: 2023-03-13

Minimum distance (0.008 AU) occured at time: 3.017302 years: 2026-04-03
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2023 DZ2 - trajectory (Neri4)
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2023 DZ2 distance to Earth (Neri4)

Minimum distance (0.002 AU) occured at time: -14.81 years: 2009

Minimum distance (0.008 AU) occured at time: 46.55 years: 2069
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Close approach

Lunar distance = 0.002569 AU
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2023 DZ2 - Real Time Close Approach

2023 DZ2 Asteroid passed 174,638 ± 26 km (0.0011 AU) of Earth on
March 25, 2023. This is a little less than half the distance to the Moon.
This was the largest asteroid to approach this close since 2019 OK [25
July 2019 it had its closest approach to Earth, when it passed about
0.00047697 AU = 71,354 km—less than one-fifth of the distance to the
Moon].
The discovery was carried out within the (Data-parallel detection of Solar
System objects and space debris) ParaSOL project that is sponsored by
UEFISCDI in Romania and led by Marcel Popescu. The new NEA was
identified by Costin Boldea and by the STU ParaSOL software pipeline
developed by the amateur astronomer Malin Stanescu. Other members of
the EURONEAR collaboration who participated in the data analysis were
Marian Predatu, and the amateur astronomers Lucian Curelaru and Daniel
Bertesteanu.
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Conclusion

The purpose of the formalistic approach (Hamiltonian dynamics and
canonical transformations) in dynamics is to furnish such formulations
of dynamical problems as are best suited for analytical and numerical
undertakings.
Regularization methods are indicative of numerical effectiveness. The
key to the further progress of numerical integrators lies in the
improved treatment of close encounters that control the dynamical
evolution.
Comparing some software packages (i.e. REBOUND, STARLAB,
etc.) that can integrate the motion of n particles under the influence
of gravity using symplectic, hybrid symplectic, and non-symplectic
integrators seems that simultaneous close encounters slow down the
integrators.
These integrators must be attentively adapted and well know their
properties to avoid unrealistic results. High-performance computer
and artificial intelligence should be the key to future research.
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Thank you for your attention!
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Considering the values of brightness that changed very few, which
minimum is M:−5.96 and reach a maximum M: −6.45 during the perigee
approach, velocity variations were so small that V: 41.74 ± 0.24 km/sec,
can be estimated constant, so with air drag deceleration determined at
perigee point, the authors concluded that far most probable fireball is an
ordinary chondrite, with an initial mass of 44 kg and loss of 0.35 kg.
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