Follow-up of fast-moving NEAs using Rotating Drift Scan CCD technique in Ukraine and China

Anton Pomazan¹, Nadiia Maigurova², Olexander Shulga², Yin-Dun Mao¹, Zheng-Hong Tang¹

¹ Shanghai Astronomical Observatory, Chinese Academy of Science

² Research Institute "Mykolaiv Astronomical Observatory"

Outlines

1. Background

- Current state of NEAs
- Difficulties of observing NEAs

2. Rotating drift-scan CCD approach

- Principle of RDS CCD technique
- Advantages of the RDS CCD technique
- Telescopes
- Observational program
- Processing

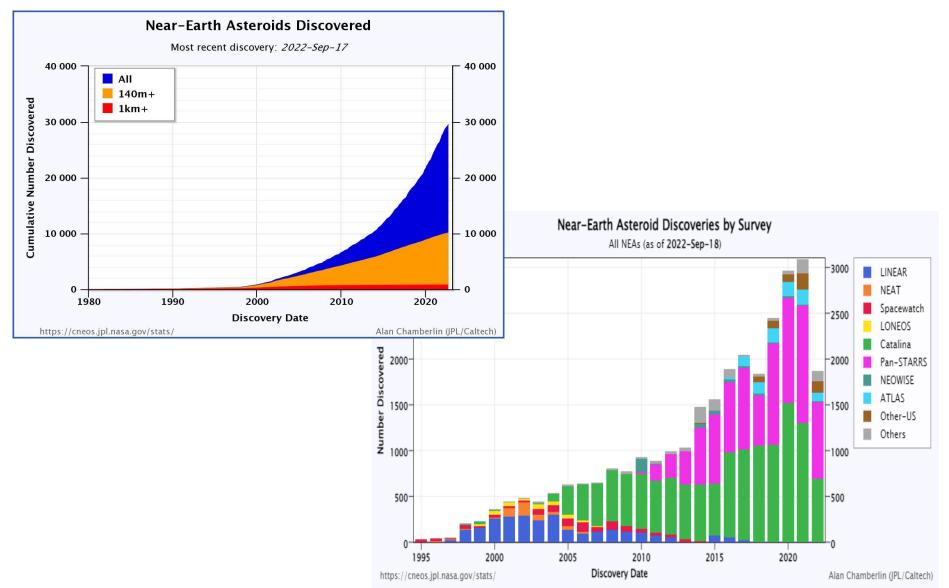
3. Astrometric results

- Obtained observational array
- Astrometric accuracy and analysis
- Orbital analysis
- Conclusions

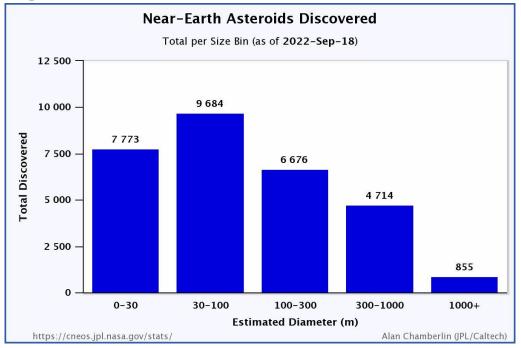
NEA (Near-Earth Asteroid):

perihelion distance < 1.3 au

PHA (Potentially Hazardous Asteroids):

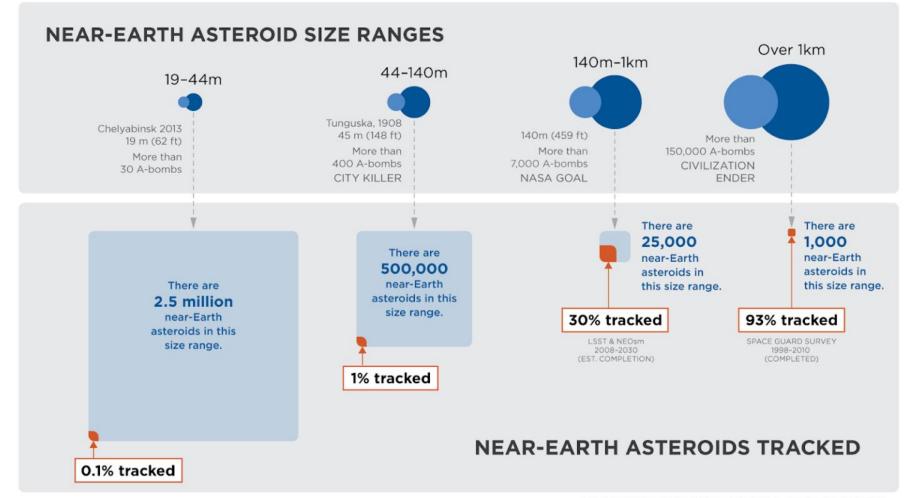

```
size > 140 m,
MOID with Earth < 0.05 au
```

Near-Earth Asteroids

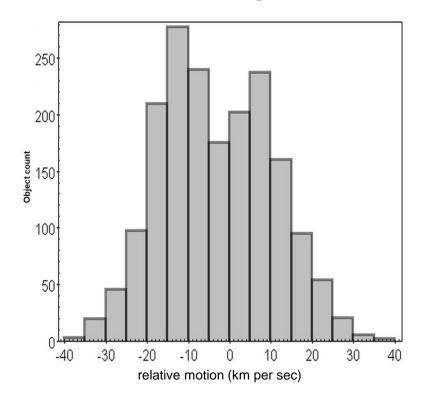

Near-Earth Asteroids	29708
<u>1+ KM Near-Earth Asteroids</u>	848
Potentially Hazardous Asteroids	2294

Data from IAU MPC on September 2022 https://minorplanetcenter.net

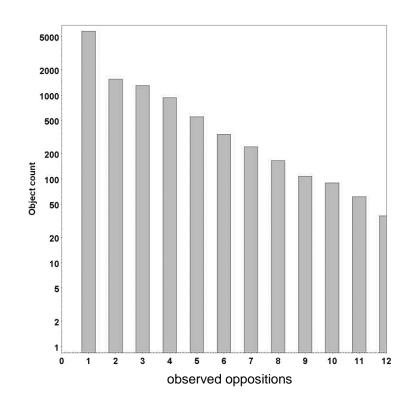
Observations



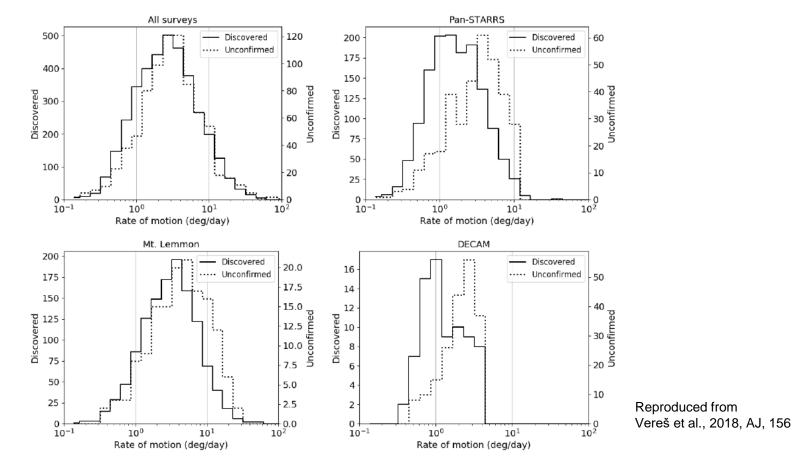
NEAs size-range distribution and completeness



Size, m	Simulation of completeness
1000+	962 ± 54 (<i>Granvik et al., 2018</i>); 940 ± 10 (<i>Harris & Chodas, 2021</i>)
100+	(7 ± 2) × 10 ⁴ (<i>Tricarico, 2017</i>)
10+	(1.59 ± 0.45) × 10 ⁷ (<i>Heinze et al., 2021</i>); 3.5 × 10 ⁷ (<i>Trilling et al., 2017</i>)


NEAs size-range distribution and completeness (continue)

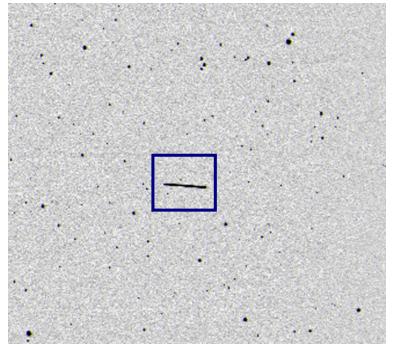
Importance of regular follow up

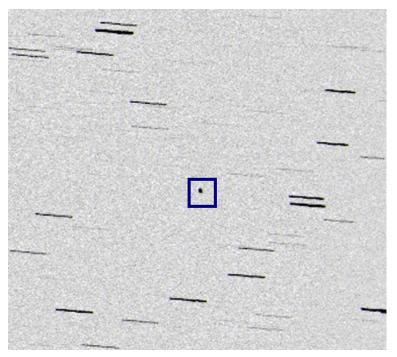


A positive "del-dot" means the NEO is moving away from the Earth, a negative "del-dot" means the NEO is moving toward the Earth. **More than 40%! of known NEO's** were discovered **after** they had approached to a minimum distance to Earth.

More than 50%! of NEAs (5755) discovered during 2000 - 2015 have been observed at 1 opposition only!

Difficulties of observing NEAs Apparent rate of motion. Discovery of NEAs

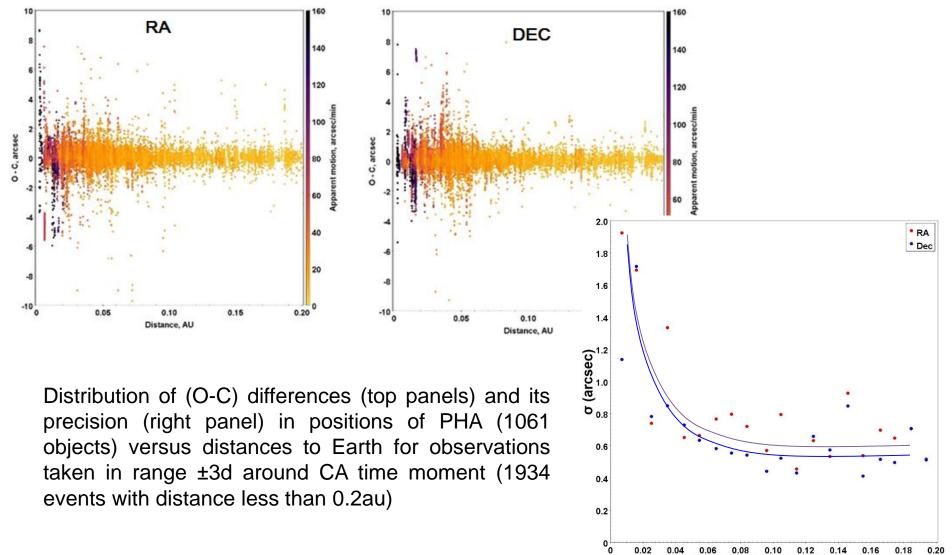



The surveys can detect fast-moving NEAs only up to a certain velocity limit, e.g. **Pan-STARRS** up to 10 deg/day (**25"/min**), DECAM3 deg/day (**7.5 "/min**).

Mt. Lemmon is able to report faster NEA candidates. This is because Mt. Lemmon has its own follow-up facilities and focuses on rapid follow-up.

Difficulties of observing NEAs Apparent rate of motion. Observations

Apparent motion of NEAs during CA regarding the background stars is high enough to cause trailing. It will result in streaked images and prevent to perform good astrometry for such fast moving objects.

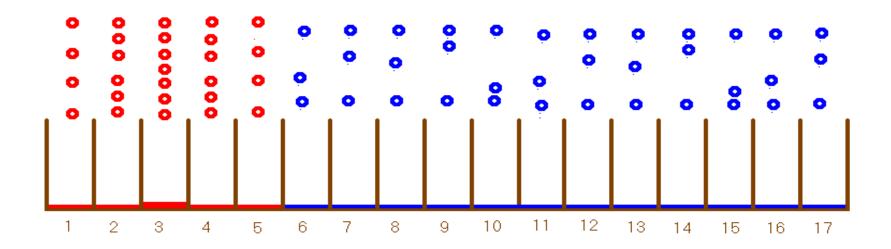


Sidereal tracking, telescope follows stars

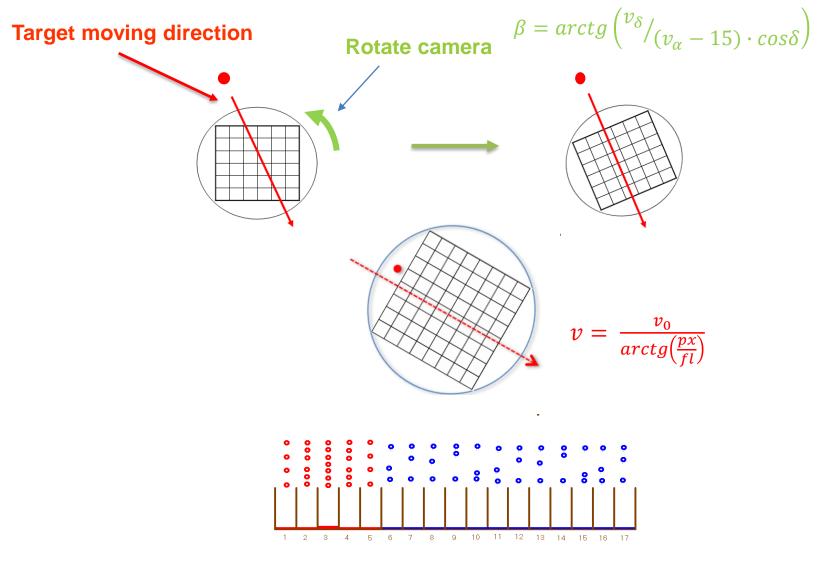
Object's tracking Telescope follows NEAs

Difficulties of observing NEAs Apparent rate of motion. Observation results

Distance to the Earth (AU)

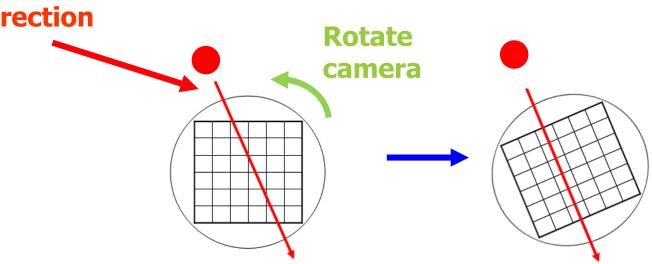

Rotating drift-scan CCD approach Original drift-scan mode

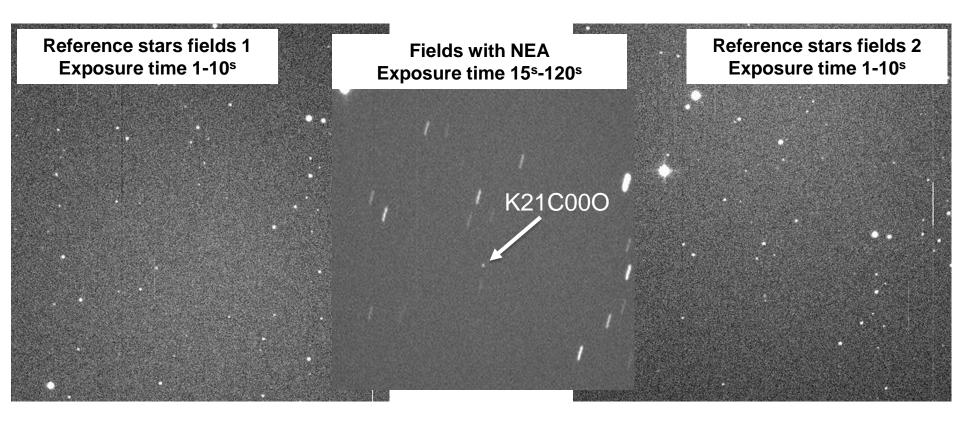
Drift-scan CCD works as:


(1) telescope keeps pointing toward specified direction;

(2) image of the target object moves across the CCD, charges are drifted with the relevant speed;

(3) charges are readout during the exposing


Rotating drift-scan CCD approach RDS CCD principles


Rotating drift-scan CCD approach RDS CCD principles

- 1) Based on prediction of the target, point the telescope toward ephemerid position;
- 2) Rotate the CCD camera to align the direction of charge transferring with direction of target object's apparent motion;
- 3) Lock the telescope and camera at the current position;
- 4) Adjust the charge transferring speed in accordance with target object's apparent motion.

Target moving direction

Rotating drift-scan CCD approach RDS CCD observations

Three CCD frames should be taken for each RDS observation set: the first and the last frames are with background stars for reference; the middle one is with target object's point-like image. The first and the third CCD frames are used to calculate the plate model parameters for transformation between pixel coordinates and the celestial coordinates.

Rotating drift-scan CCD approach Advantages of the RDS CCD technique

- The positions of fast-moving objects (FMO) could be as precise as for slow-moving objects, since the images of the reference stars and target objects are point-like;
- The exposure time of the object is only limited by the FOV of the telescope, so long exposures can be used for faint FMO in order to increase SNR;
- ► The implementation of this technique is simple and cost-effective.

References:

- > Tang et al. 2014. Mem.Soc. Astron.It., 85, 821;
- Pomazan, A. et al. 2021. RAA, 21, id.175;
- > Pomazan, A. et al. 2022. P&SS, 216, id.105477

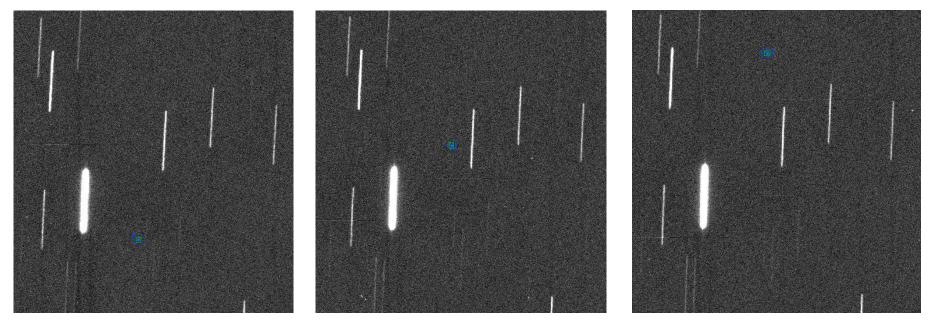
Rotating drift-scan CCD approach Processing and astrometric reductions

Logic of reductions: Equatorial coordinates of the reference stars Horizontal coordinates of the reference stars Plate constants of stars' CCD frames Linear interpolation of plate constants to time moment of object's CCD frame Horizontal coordinates of an object Equatorial coordinates of an object

Developed software in ShAO:

Is written in Python (3.x) language

Uses specialized modules: NumPy, SciPy, Astropy, PALpy


Transformation equatorial coordinate to horizontal made by routines based on SLALIB functions

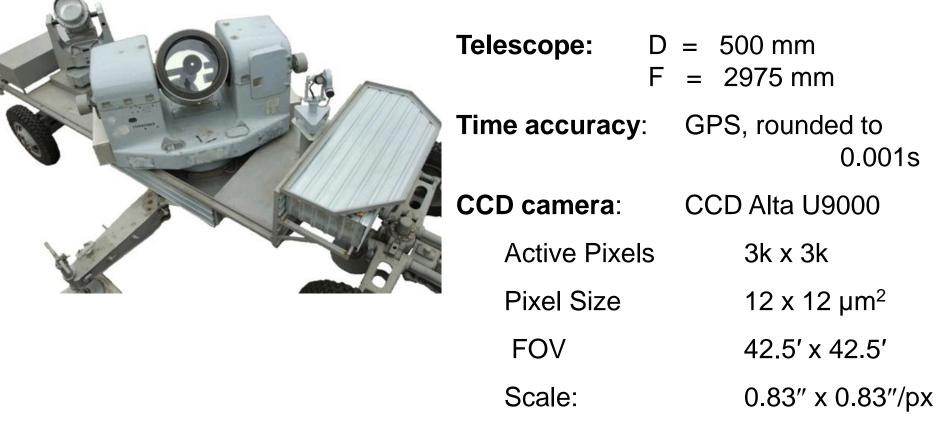
Standardized atmosphere parameters are used

Plate model parameters are calculated using least-square fitting method with several iterations

The initial astrometric reduction of CCD frames with stars is standard and made by *Astrometrica* software with *Gaia* DR2 star catalogue as reference system.

Rotating drift-scan CCD approach Processing and astrometric reductions

NEOCP object observed on 2021-09.12. Provisional designation - C28NMZ1 (2021 RJ₁₄)


Determination of target object's rectangular coordinates is made by weighted average method:

$$X_{0} = \frac{\sum_{i=i1}^{i2} \sum_{j=j1}^{j2} X_{ij} I_{ij}}{\sum_{i=i1}^{i2} \sum_{j=j1}^{j2} I_{ij}} \qquad Y_{0} = \frac{\sum_{i=i1}^{i2} \sum_{j=j1}^{j2} Y_{ij} I_{ij}}{\sum_{i=i1}^{i2} \sum_{j=j1}^{j2} I_{ij}}$$

Telescopes

RI "MAO"

Mykolaiv, Ukraine MPC observatory code 089

Photometric system: since 2018 - standard V, R filters (Johnson-Cousins UBVRI photometric system)

Telescopes

LiShan observatory

Lintong, Xi'An, China MPC observatory code O85

	= 500 mm = 3445 mm
Time accuracy:	GPS, rounded to 0.001s
CCD camera:	CCD Alta U9000
Active Pixels	3k x 3k
Pixel Size	12 x 12 µm²
FOV	36.7′ x 36.7′
Scale:	0.72″ x 0.72″/px

Features:

- Half automatic and remotely controlled;
- No filters for now

Observational program

The objects for observations are searched on the daily basis at:

 NEAs (PHA with medium priority) via NEODyS-2 query form: <u>https://newton.spacedys.com/neodys/</u> additional criteria: ap. rate of motion ≥ 0. 15"/s (according to FWHM) (automatically)

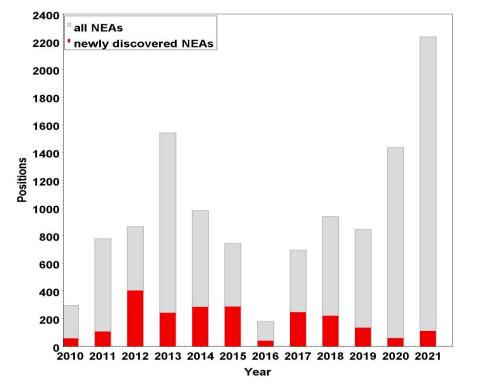
2) Objects from NEO Confirmation Page lists (higher priority): <u>https://newton.spacedys.com/neodys/NEOScan/</u> <u>https://cneos.jpl.nasa.gov/scout/#/</u>

(automatically)

3) Objects from the Priority List (higher priority): <u>https://neo.ssa.esa.int/priority-list</u> (manually)

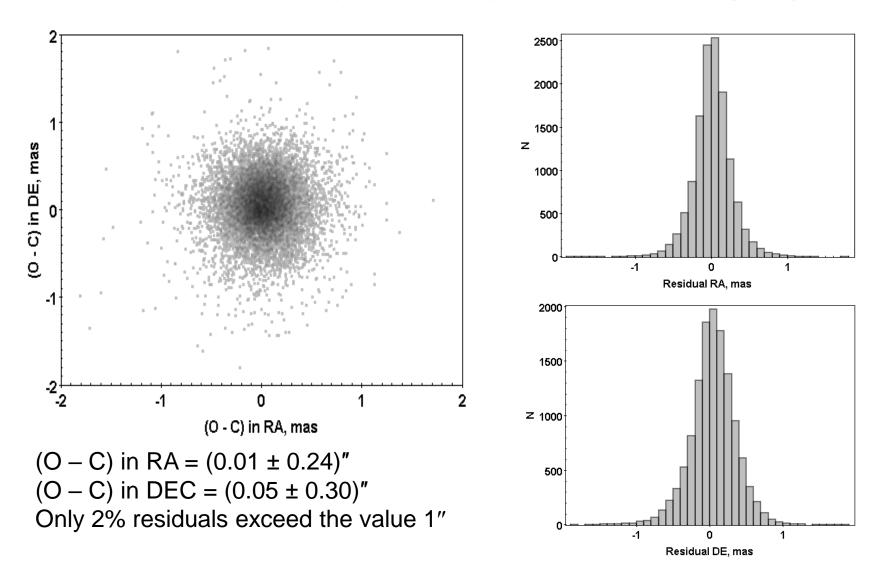
Selection criteria:

ap. magnitude \leq 18 mag; declination > -25° (for 089); > -45° (for 085); elongation \geq 85°;

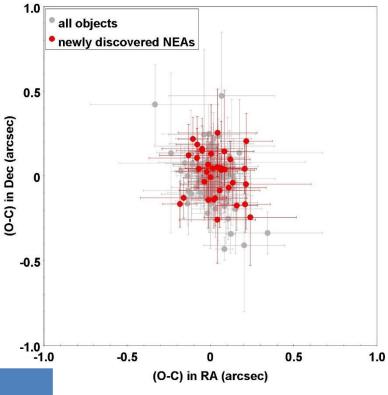

Obtained observational data array

089 - RI "MAO"

Total number of NEAs obtained positions is more than **13,000** for 540 NEAs during 2010 -2021.


O85 - LiShan Observatory

Total number of obtained positions is **1616** for **92** NEAs. Among them **352** positions for **24** newly discovered ones.


Year	N1	N2	Newly discovered			
			n1	n2		
2019	368	16	54	2		
2020	462	34	32	3		
2021	786	43	266	19		

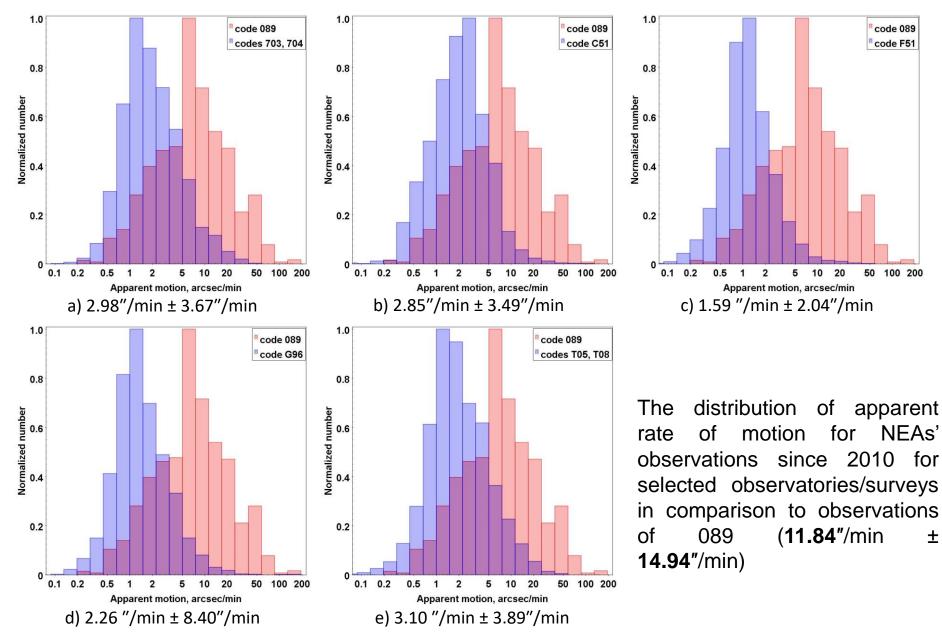
Astrometric accuracy and analysis. RI "MAO" (089)

Astrometric accuracy and analysis. LiShan observatory (O85)

The precision for both newly discovered and already known NEAs is in the range 0.1'' - 0.2'' in both coordinates. However, the mean apparent rate of motion among known objects is 10.4'' min⁻¹ while is 43.7'' min⁻¹ for newly discovered NEAs.

	(O – C) ± σ (″)								
Year	Already kn	own NEAs	Newly discovered NEAs						
	RA	Dec	RA	Dec					
2019	-0.01 ± 0.09	0.04 ± 0.11	-0.04 ± 0.13	0.16 ± 0.20					
2020	-0.02 ± 0.13	-0.01 ± 0.16	0.01 ± 0.13	-0.05 ± 0.16					
2021*	0.01 ± 0.14	-0.04 ± 0.14	0.05 ± 0.17	0.00 ± 0.17					

Astrometry results Results for newly discovered NEAs (code 089)

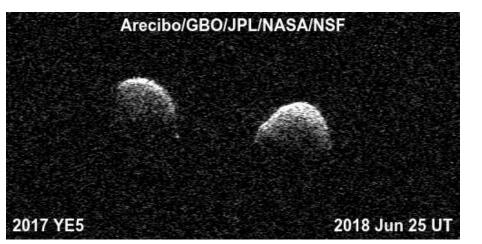

NEO	N1 N2		N2 Uncert.		otion, * nin	(O - C)	Mag	
			Param.	max.	mean obs.	RA	Dec	
K20Q06V	160	19	6	67.8	31.6	-0.01 ± 0.13	0.37 ± 0.17	16.4
K20R00C	275	10	5	41.6	36.1	-0.03 ± 0.13	0.21 ± 0.15	15.9
K20R06Z	89	9	5	315.9	234.2	-0.16 ± 0.27	0.16 ± 0.18	16.4
K20S00W	149	8	5	3414.6	32.4	0.14 ± 0.08	0.42 ± 0.14	16.0
K20R00J	108	7	4	91.1	88.9	-0.75 ± 0.30	0.38 ± 0.22	16.6
K20P04T	38	4	6	82.1	41.0	0.02 ± 0.29	-0.34 ± 0.26	16.9
K20N01K	114	3	6	46.3	25.1	0.05 ± 0.14	-0.05 ± 0.09	15.9
K21J01G	162	10	5	134.2	97.9	0.13 ± 0.14	0.17 ± 0.17	15.5
K21N04M	64	10	6	102.4	102.2	0.02 ± 0.23	0.16 ± 0.33	16.1
K21K00C	97	7	7	32.3	27.4	-0.05 ± 0.26	0.49 ± 0.26	17.0

* The column **max.** shows maximum apparent motion with respect to Geocenter; the column mean **obs.** – regarding observational site (code O85)

Astrometry results Results for newly discovered NEAs (code O85)

NEO	N1 N2		Uncert.		otion, * nin	(O - C)	Mag		
			Param.	max.	mean obs.	RA	Dec		
K20W05U	66	156	2	32.8	24.0	0.04 ± 0.11	0.04 ± 0.12	13.8	
K21C00O	16	86	6	389.9	218.5	0.37 ± 0.15	0.28 ± 0.13	14.0	
K21C02K	29	193	3	19.0	11.9	-0.05 ± 0.15	0.03 ± 0.15	15.9	
K20C01X	16	153	0	42.6	42.3	0.03 ± 0.14	-0.19 ± 0.17	17.6	
K20M03X	11	142	4	25.2	25.2	0.02 ± 0.05	-0.13 ± 0.17	16.3	
K21C06A	22	44	3	359.2	336.4	-2.03 ± 0.25	-0.05 ± 0.18	17.4	
K21D01W	14	269	3	82.5	82.2	-0.14 ± 0.10	-0.18 ± 0.14	14.4	
K21F00H	10	92	7	26.3	25.6	-0.01 ± 0.13	-0.14 ± 0.17	17.0	
K21F01K	15	49	7	54.8	53.4	0.24 ± 0.28	-0.24 ± 0.29	17.4	
K21V02R	9	59	6	177.8	80.8	-0.52 ± 0.23	0.13 ± 0.26	17.4	

* The column **max.** shows maximum apparent motion with respect to Geocenter; the column mean **obs.** – regarding observational site (code O85)

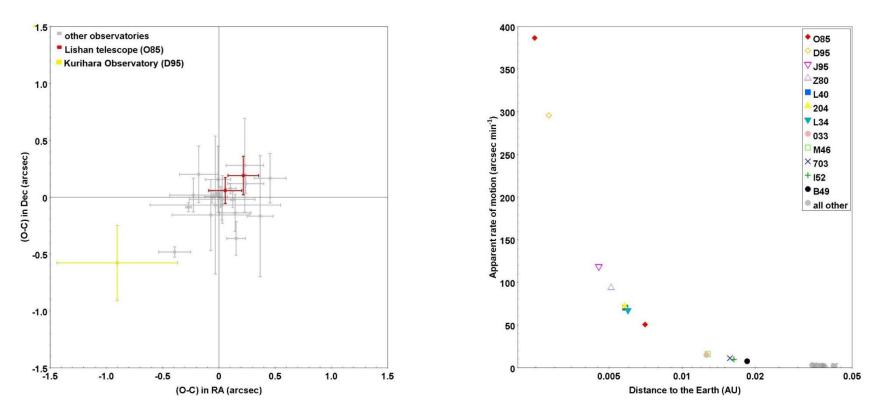

Astrometry results Analysis of observations (2017 YE5)

The asteroid was discovered at December 2017.

Only 95 observations were available within 191d orbital arc.

Close approach to Earth to 0.04 AU was at **Jun 22, 2018.**

Date 2018	O-C, ″		Date 2018	O-C, ″		
Date 2016	RA	Dec		RA	Dec	
06-20.966624	-10.669	-7.228	06-20.966624	-0.137	0.005	
06-20.971275	-10.567	-7.067	06-20.971275	-0.040	0.174	
06-20.977173	-10.325	-7.516	06-20.977173	0.196	-0.264	
06-20.981830	-10.430	-6.835	06-20.981830	0.087	0.426	
06-20.987260	-10.290	-6.990	06-20.987260	0.221	0.281	
06-20.989585	-10.307	-7.638	06-20.989585	0.202	-0.363	
mean (O-C)	10.431	-7.212	mean (O-C)	0.088	0.043	
σ	0.156	0.312	σ	0.148	0.310	

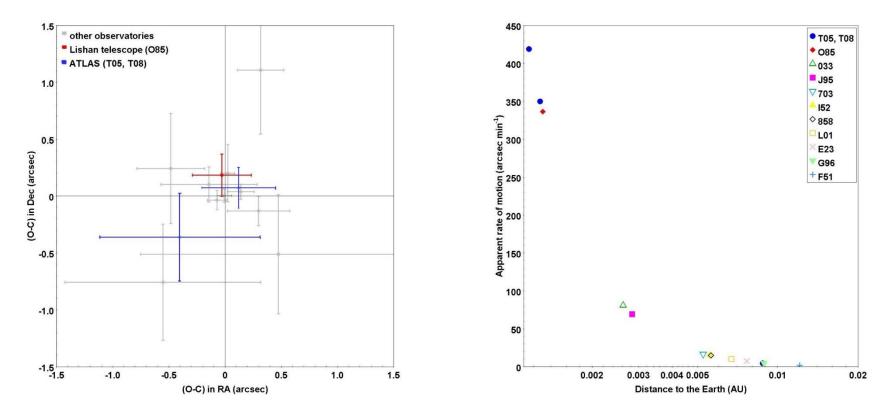

(O-C) differences **before** and **after** adding own observations

Astrometry results Analysis of observations (2021 CO)

The asteroid was discovered on Feb 5, 2021.

	Initia	calc.	Final calc.		
	RA	Dec	RA	Dec	
mean	0.63	0.50	0.22	0.19	
σ	0.16	0.16	0.14	0.17	

Only 99 positions available over 6d



Astrometry results Analysis of observations (2021 CA6)

The asteroid was discovered on Feb 10, 2021.

	Initial	calc.	Final calc.			
	RA	Dec	RA	Dec		
mean	-2.03	-0.05	-0.03	0.18		
σ	0.25	0.18	0.26	0.19		

Only 66 positions available over 3d

Orbital analysis

Calculations were done in 2 ways:

- all positions used (all)
- positions without CA date (w/o CA)

NE	A	N obs.	rms (″)	a (au)	е	i (°)	n (°/day)	Ω (°)	ω (°)	MA (°)	CA date	σ (")
K20N01K	all	119	0.29	1.30E-03	3.10E-04	2.10E-02	8.50E-04	1.60E-03	2.70E-02	6.00E-02	04 09 2042	1643
KZUNUT K	w/o CA	108	0.27	1.50E-03	3.60E-04	2.50E-02	9.80E-04	1.90E-03	3.20E-02	7.00E-02	04-08-2043	173d
K21C00O	all	60	0.24	1.50E-04	1.70E-04	2.30E-03	1.60E-04	4.80E-05	4.40E-04	2.70E-02	27-08-2022	917
K21C000	w/o CA	43	0.24	4.00E-04	5.30E-04	6.00E-03	4.50E-04	4.80E-03	6.00E-03	8.00E-02		2585
K241100M	all	200	0.41	8.00E-04	1.40E-04	4.80E-04	1.40E-04	2.80E-04	6.00E-04	4.60E-03	08-02-2029	406'
K21U09M	w/o CA	178	0.42	1.00E-03	1.80E-04	6.00E-04	1.80E-04	3.60E-04	7.00E-04	5.90E-03		936'
K21V02R	all	87	0.6	1.40E-03	2.20E-04	1.80E-03	2.10E-04	1.30E-05	8.00E-05	3.70E-03	00.44.0005	664'
	w/o CA	66	0.48	2.10E-03	3.10E-04	2.60E-03	2.90E-04	2.20E-05	1.60E-04	5.40E-03	26-11-2085	62d

Orbit determination shows reducing of sky uncertainty with adding new positions near CA date and extending orbital arc

Conclusions

- A large telescope without secured follow-up is inefficient at turning its NEA candidates into NEAs discoveries!!!
- The using RDS CCD technique for NEAs observations allows us to observe the objects on minimal distances to the Earth with high apparent rate of motion with a good accuracy.
- The RDS CCD technique allows to extend observed orbital arc with highprecision positions around CA date. Such results are essentially important for newly discovered NEAs, allow to improve orbit determination and make reliable assessment, prevent object losses.
- Worldwide network of small telescopes with RDS CCDs would have strong advantages to observe all NEAs especially PHAs for better astrometry and photometry.
- SHAO and RI "MAO" would like to cooperate to any observatory with the same interests and provide technical support.

Thank you!