

Astronomical Institute seminar

MAIN ASTEROID BELT

Asteroids spectroscopy with the Gaia DR3

Marjorie Galinier

Al ANR Origins

marjorie.galinier@oca.eu

3rd year PhD student of Marco Delbo & Laurent Galluccio

06/03/2024

Introduction

Classification

Conclusions

→ <u>Asteroids</u>: what is left of the planetesimals, building blocks of planets.

VLT/SPHERE images of the 42 asteroids with D>210 km (Vernazza+2021)

(36256) 1999 XT17 family Classification

Dynamics

3

Introduction 💮 Spectroscopy and classification

Spectroscopy

<u>Reflectance spectroscopy</u>

- Spectrum characteristic of the mineralogic composition of objects
- Powerful tool to probe the composition of asteroids surfaces

Credit figure : Gaffey et al. 2011, Fig.3

Dynamics

The evolution of taxonomy

Chapman et al. 1975:

- Dataset: 110 asteroids
- **Observables:**
 - **polarimetry** over a range of solar phase angle
 - broad-band IR **radiometry**
 - VISNIR spectrophotometry
 - albedo
- ➡ More than 90 % of minor planets fall into 2 broad compositional groups: C and S

(36256) 1999 XT17 family

Classification

Dynamics

Chapman et al. 1975

Introduction Spectroscopy and classification Gaia

Chapman et al. 1975

Tholen 1984

<u>Dataset:</u> 589 objects - 405 to define the taxonomy

• **broad band photometry** based on the Eight-Color Asteroid Survey (ECAS), 0.3 to 1.1 microns wavelength range

• **albedo** from the thermal radiometric survey

Introduction 💮 Spectroscopy and classification

Gaia

Tholen 1984

(36256) 1999 XT17 family

Classification

Dynamics

Observables: VIS spectroscopy from the Small Main

Introduction Spectroscopy and classification

Gaia

Tholen 1984

Classification

Dynamics Conclusions

Introduction Spectroscopy and classification Gaia

Mahlke et al. 2022

- Dataset: 2983 observations of 2125 asteroids
- **Observables:**
 - VIS, NIR, and VISNIR \bullet spectroscopy
 - albedo
 - \rightarrow 17 classes

DeMeo et al. 2009

Mahlke et al. 2022

(36256) 1999 XT17 family

Classification

Dynamics

Class	Spectrum	Albedo		Prototypes
A	Broad and deep absorption feature at 1 µm, strong red slope in the near-infrared.	$0.25^{0.09}_{0.07}$	2.5 0.8 (246) Asporina (28	(354) Eleonora
В	Neutral- to blue slope in the visible, blue slope in the near-infrared.	$0.06^{0.05}_{0.03}$	1.1 0.7 (2) Pallar (531) Zerlin	(3200) Phaethon
с	Red visible slope with a possible broad feature around 1 µm and a red near-infrared slope. The spectrum might have an overall concave shape.	$0.05^{0.02}_{0.01}$	1.3 0.9 (1) Ceres (1)	10) Hygiea (24) Themis
Ch	Absorption feature at 0.7 µm. The near-infrared slope is red while the overall shape might be convex.	$0.05^{0.02}_{0.01}$	1.3 0.9 (13) Egeria (1	9) Fortuna (41) Daphne
D	Featureless with steep red slope with a possible convex shape longward of 1.5 µm.	$0.06^{0.03}_{0.02}$	2.3	
E	Strong red slope in the visible with a feature around 0.9 µm of varying depth and a neutral near-infrared continuation.	$0.57^{0.15}_{0.12}$	0.8 (588) Achilles (9)	4) Aschera (434) Hungaria
К	Strong red slope in the visible with a broad feature around 1 µm followed by a blue- to neutral near-infrared slope.	$0.13^{0.04}_{0.03}$		79) Sidania (653) Recenike
L	Variable appearance apart from a red visible slope. A small feature around 1 μ m and a possible one at 2 μ m. The near-infrared slope is blue or red.	$0.18^{0.07}_{0.05}$	1.6 0.7 (234) Barbara (3	97) Vienna (599) Luisa
М	Linear red slope with possible faint features around 0.9 μm and 1.9 $\mu m.$ Might show convex shape in the near-infrared.	$0.14^{0.05}_{0.04}$	1.6 0.7 (16) Psyche (2	2) Kalliope (216) Kleopatra
0	Broad, bowl-shaped 1 μm absorption feature and a weaker feature at 2 $\mu m.$	$0.26^{0.02}_{0.02}$	1.4 0.5 (3628) Begnem. (7472	() Kumakiri
Ρ	Linear red slope and generally featureless. Less red than D-types.	$0.05^{0.02}_{0.01}$	1.6 0.7 (65) Cybele	(87) Sylvia (153) Hilda
Q	Broad absorption at 1 μ m and a shallow feature at 2 μ m. An overall blue slope in the near-infrared.	$0.24_{0.08}^{0.12}$	1.4 0.7 (1862) Apollo (1864	Daedalus (5143) Heracles
R	Strong feature at 1 μ m and a feature at 2 μ m. The latter feature is shallower than in V-types.	$0.30_{0.04}^{0.05}$	1.6 0.7 (349)Dembore. (537)	9) Abehiro. (137062) 1998 WM
S	Moderate features around 1 µm and 2 µm and a neutral- to red near-infrared slope.	$0.24^{0.10}_{0.07}$	1.4 0.8 (3) Juno	(5) Astraea (14) Irene
v	Deep absorption features at 1 μ m and 2 μ m. The former is much narrower than the latter.	$0.29^{0.11}_{0.08}$		29) Kollaa (4215) Kamo
Z	Extremely red slope, redder than the D-types. Featureless but may exhibit concave shape in the near-infrared.	$0.07^{0.04}_{0.03}$	3 1 (203) Pompeja (2)	69) Justitia (908) Buda

The Gaia mission

- ESA astrometric mission, launched in December 2013 •
- <u>Objective</u>: improve our knowledge of the structure, the formation and the evolution of the Milky Way \mathbf{O}

- asteroids...).
- Magnitude limit: 21

(36256) 1999 XT17 family

Classification

Dynamics

Practical goals: measure the position, distance and motion of more than a billion of objects (stars, galaxies,

3 instruments

The Gaia mission

Classification

Dynamics

Spectroscopy and classification 😳 Gaia (36256) 1999 XT17 family Introduction

The Gaia mission

Gaia Focal Plane **106 CCDs = 938 million pixels = 2800 cm²**

Credit figure : Carrasco et al. 2021

Classification

Dynamics

104.26 cm

optimised for the

blue part:

[330 - 680] nm

optimised for the

red part:

[640 - 1050] nm

Production of mean reflectance spectra

Red

Photometer

000

Blue

Photometer

CCDS

6000

5000

4000

Counts 3000

2000

1000

Credit figure : Gallucio et al., Gaia collaboration 2022

(36256) 1999 XT17 family

Classification

Dynamics

Epoch spectra

 \rightarrow overlap [640 - 680] nm: production of a full epoch spectrum

Production of mean reflectance spectra

Credit figure : Gallucio et al., Gaia collaboration 2022

(36256) 1999 XT17 family

Classification

Dynamics

Production of mean reflectance spectra

→ 16 wavelength bands: [374 - 1034] nm

Credit figure : Gallucio et al., Gaia collaboration 2022

Dynamics

➡ Band every 44 nm, bin large of 44 nm.

Production of mean reflectance spectra

Credit figure : Gallucio et al., Gaia collaboration 2022

Dynamics

➡ In each bin, the median reflectance and median absolute deviation MAD were calculated.

➡ Values outside of [median-2.5MAD, median+2.5MAD] filtered

Repeated twice

 \rightarrow Minimum number of epoch spectra required to produce a mean

➡ Most objects have around 15 epoch spectra

Production of mean reflectance spectra

Credit figure : Gallucio et al., Gaia collaboration 2022

Classification

Dynamics

<u>Mean reflectance spectrum</u>

 \blacksquare In each bin, weighted mean of the filtered $R(\lambda_i, t)$

➡ Normalisation at 550 nm

Gaia Data Release 3

Centaurs | Trans-Neptunian Objects

(36256) 1999 XT17 family

Classification

Dynamics

Introduction Spectroscopy and classification

Study of asteroid family (36256) 1999 XT17 with the Gaia DR3 spectral data

Gaia 💮 (36256) 1999 XT17 family

Classification

Dynamics

Should see traces of layers of differentiated

- Defined with a dynamical point of view: hierarchical clustering method (HCM) (Nesvorny+2015)
- Applied to the distribution of asteroids in proper orbital elements space (a_p, e_p, i_p)
- \blacksquare defines a cutoff distance d_{cut} , and requires that the distance $d(a_p,e_p,i_p)$ between 2 neighboring orbits clustered by the algorithm is $d(a_p, e_p, i_p) < d_{cut}$

Gaia (36256) 1999 XT17 family

Classification

- Defined with a dynamical point of view: hierarchical clustering method (HCM) (Nesvorny+2015)
- Applied to the distribution of asteroids in proper orbital elements space (a_p, e_p, i_p)
- \blacksquare defines a cutoff distance d_{cut} , and requires that the distance $d(a_p,e_p,i_p)$ between 2 neighboring orbits clustered by the algorithm is $d(a_p, e_p, i_p) < d_{cut}$

Gaia (36256) 1999 XT17 family

Classification

Dynamics

d_{cut} 0.35

- Defined with a dynamical point of view: hierarchical clustering method (HCM) (Nesvorny+2015)
- Applied to the distribution of asteroids in proper orbital elements space (a_p, e_p, i_p)
- \blacksquare defines a cutoff distance d_{cut} , and requires that the distance $d(a_p,e_p,i_p)$ between 2 neighboring orbits clustered by the algorithm is $d(a_p, e_p, i_p) < d_{cut}$

Gaia (36256) 1999 XT17 family

Classification

- Defined with a dynamical point of view: hierarchical clustering method (HCM) (Nesvorny+2015)
- Applied to the distribution of asteroids in proper orbital elements space (a_p,e_p,i_p)
- \blacksquare defines a cutoff distance d_{cut}, and requires that the distance $d(a_p,e_p,i_p)$ between 2 neighboring orbits clustered by the algorithm is $d(a_p, e_p, i_p) < d_{cut}$

► Nesvory+2015: **122 identified families**

Gaia (36256) 1999 XT17 family

Classification

The 'missing mantle' problem

- Basaltic crust-like asteroids
- Iron-rich core-like asteroids
- Olivine-rich mantle-like asteroids... ? A-type asteroids

Class	Spectrum		Albedo
A	Broad and deep absorption and strong red slope in the	ption feature at 1 µm, near-infrared.	$0.25{}^{0.09}_{0.07}$
			Mahlke+202
\sim	Sa	Bus-DeMeo 2009 t	axonomv

Gaia 💮 (36256) 1999 XT17 family

Dynamics

The 'missing mantle' problem

DeMeo+2019:

Olivine-dominated A-type asteroids in the main belt: Distribution, abundance and relation to families

Francesca E. DeMeo^{*,a}, David Polishook^b, Benoît Carry^c, Brian J. Burt^d, Henry H. Hsieh^{e,f}, Richard P. Binzel^a, Nicholas A. Moskovitz^d, Thomas H. Burbine^g

- 'rather evenly distributed throughout the main belt'
- 'have no statistically significant concentration in any asteroid family.'

Gaia (36256) 1999 XT17 family

Classification

Dynamics

Conclusions

➡ 'A-type asteroids account for less than 0.16% of all main-belt objects larger than 2 km'

Family selection

- Literature: families with a high number of A-types (potential and/or confirmed)
 - Families and family memberships of Nesvorny+2015
 - asteroid classification from ~ 50 articles (<u>mp3c.oca.eu</u>)
 - proportion of asteroids classified as A-type / asteroids classified otherwise in each family
 - Consider only the families with a proportion of potential A-types above 10% (arbitrary choice)

Dynamics

Family selection

• Results:

- 3 families with a **potential A-types proportion >10%**: (10811) Lau : 13% (36256) 1999 XT17 : 23 % (7468) Anfimov : 28 %
- In the **Gaia DR3** spectral dataset: • (10811) Lau : 1 spectrum, asteroid Lau itself (36256) 1999 XT17 : 15 spectra (7468) Anfimov : 7 spectra
 - **Average SNR:** (36256) 1999 XT17 : mean average SNR of 40 (7468) Anfimov : asteroids (7468) and (18853): SNR of 47.41 and 32.21. Others: SNR~25,19,15,13 → low SNR

Gaia 💮 (36256) 1999 XT17 family

Classification

Dynamics

Conclusions

Classified before? Yes, A-types VISNIR spectroscopy (DeMeo+2019, Mahlke+2022)

Family (36256) 1999 XT17

- **58 members,** $p_V = 0.21$ *Nesvorny*+2015
- Located in the 'pristine zone'

Gaia 💮 (36256) 1999 XT17 family

Classification

Dynamics Conclusions

Family (36256) 1999 XT17

Gaia 💮 (36256) 1999 XT17 family

Classification

Dynamics

Conclusions

Observation of (33763) 1999 RB84

Gaia 💮 (36256) 1999 XT17 family

Classification

Dynamics

- Algorithm: developed in Avdellidou+2022
- <u>Curve matching</u>: calculate a reduced χ^2 between asteroids spectra and Bus-DeMeo templates
- Gaia DR3 spectra: from 450 to 900 nm (cut off first 2 and last 4 data points)

•
$$\chi_{tot}^2 = \chi_{DR3}^2 + \chi_{NIRspec}^2 + \chi_{NIRcolor}^2 + \chi_{SDSS}^2$$

- **36256**: $\chi_{tot}^2 = \chi_{DR3}^2 + \chi_{NIRspec}^2 + \chi_{SDSS}^2$
- **33763**: $\chi^2_{tot} = \chi^2_{DR3} + \chi^2_{NIRspec}$
- **25356, 40671:** $\chi^2_{tot} = \chi^2_{DR3} + \chi^2_{NIRcolor}$
- Gives best 2 classes

(36256) 1999 XT17 family 😳 Classification Dynamics Conclusions

• 99004:
$$\chi^2_{tot} = \chi^2_{DR3} + \chi^2_{SDSS}$$

• **Others:**
$$\chi^2_{tot} = \chi^2_{DR3}$$

<u>Results:</u> 12 asteroids classified A-type as first or second best class

Asteroid	Average SNR	Η	Class
15610	35.32	13.3	A,L
16789	38.25	13.5	A,Sv
20975	36.01	13.6	A,Sv
25356	66.49	12.8	A,Sa
27565	20.74	13.6	A,L
33763	48.07	13.4	A,Sa
34902	14.7	14.4	Sq,Sr
36256	66.56	12.4	A,Sa
40671	28.09	13.6	A,Sa
57276	128.74	12.9	A,Sv
66676	52.28	13.3	L,A
83124	14.88	14.7	S,Sr
88057	20.75	14.5	K, S
99004	13.93	14.6	L,A
140349	13.86	14.7	Sv, A

(36256) 1999 XT17 family 😳 Classification Dynamics Conclusions

Results: 12 asteroids classified A-type as first or second best class

17

							•	
Asteroid	Average SNR	Н	Class				•	
15610	35.3					••	•	
16789	38.25							
20975	36.01	Δ	re t	-hece	A-twnee real?	•		
25356	66.49				- A-Cypes rear :	•		
27565	20.74					• Sector	KIS	
33763	48.07	13.7	n,oa	<u> </u>		sqsr	•	
34902	14.7	14.4	Sq,Sr	ニ エ 14 -				
36256	66.56	12.4	A,Sa		A first hest class		• • • • •	
40671	28.09	13.6	A,Sa		$\Delta \text{second best class}$		A /	
57276	128.74	12.9	A,Sv	13 -	13 -	\mathbf{K}/\mathbf{S} other first and second best classes		A
66676	52.28	13.3	L,A		N/ 3 Other first and second Dest classes		A	
83124	14.88	14.7	S,Sr		 1999 XT17 family members 			
88057	20.75	14.5	K, S	12				
99004	13.93	14.6	L,A		2.90 2.92		2.94	
140349	13.86	14.7	Sv, A		Proper semi-major	r axis (au)		

(36256) 1999 XT17 family 😳 Classification Dynamics

Conclusions

Introduction Spectroscopy and classification Gaia

Classification of Gaia DR3 spectra

The Gaia RP problem

(36256) 1999 XT17 family 😳 Classification Dynamics

- S-type (Carvano+2001, Bus&Binzel+2002, Lazzaro+2004, DeMeo+2009, Mahlke + 2022)
- Affected by a reflectance increase of its RP

Conclusions

The Gaia RP problem

(36256) 1999 XT17 family 💮 Classification

Dynamics Conclusions

- **S-types** literature
- Affected by a reflectance increase of its RP part
- Does this issue affect our classification ?

- Bus-DeMeo scheme → 389 asteroids, 21 A-types
- **Classify only the Gaia DR3 spectra**
- Some identified 'too high RP' S-types

number	literature	type1	type2
25	S	L	Sv
512	Sqw	L	Sv
913	Sw	L	Sv
1147	Sw	L	Sv
2074	Sw	А	L
3858	Srw	L	Sv
6067	S	L	Sv
7057	S	L	Sv

(36256) 1999 XT17 family 😳 Classification Dynamics

• <u>Test of the algorithm</u>: list of asteroids having a Gaia DR3 spectrum + classified in the NIR with the

Classification of A-types not affected by the RP problem

Classification: recap

(36256) 1999 XT17 family with Gaia DR3

- 12 asteroids found A-type
 - 9 with a SNR>21: probable A-types. Among these, 4 confirmed by NIR

• 6 asteroids in total have a SNR<21: members of the **S-complex**

(36256) 1999 XT17 family 😳 Classification Dynamics Conc

Introduction Spectroscopy and classification Gaia

Dynamical study

Located in the 'pristine zone'

pristine zone Eos family

(36256) 1999 XT17 family

Classification 💮 Dynamics

Gaia DR3 asteroids with H<14.5 (36256) 1999 XT17 family

Dynamical study

Tsirvoulis+2018:

- found **Eos fugitives**: selected zone in the proper orbital elements space with 2.82 < ap < 2.96 0.03 < ep < 0.1 $0.12 < \sin ip < 0.2$
- Eos family members cross the J7/3 MMR and orbit in the 'pristine zone'

Dynamical study

Broz&Morbidelli+2019, Nesvorny+2015:

(36256) 1999 XT17 family

Classification 😳 Dynamics

Dynamical study

(36256) 1999 XT17 family

Classification 💮 Dynamics

- Eos family members
- 1999 XT17 family members
- Gaia A-type
- Gaia non A-type
- Gaia SNR>21
- Gaia SNR<21
- Other A-types

Recap

- 15 Gaia DR3 spectra: **12 potential A-types**, 4 confirmed by NIR data. 5 more found A-type asteroids with SNR>21, 6 asteroids with SNR<21 members of the S-complex.
- In total: 36 family members with a classification, 16 potential A-type asteroids 44.4% of A-types in the classified asteroids. Secondary class: S-complex → 30.5%
- family in the pristine zone, but probably got dynamically implanted there.
- grouping of potential A-types outside the V-shape of Eos, probable mix with Eos fugitives
- *IF* A-types are real, and are the only real members of family (36256) 1999 XT17: dynamical family (36256) mix of A-types from a **common olivine-rich parent body** + interlopers.

Olivine-rich parent body once part of the mantle of a differentiated planetesimal? Planetesimal catastrophically disrupted in another region, and a fragment of it implanted in pristine zone?

Conclusion and perspectives

- **Spectroscopy** is a powerful tool to probe the surface composition of asteroids.
- The *Gaia* DR3 increased drastically the amount of available small bodies spectra.
- Large homogeneous dataset: allows to study asteroid families, for example.
- Family (36256) 1999 XT17: potential small A-type family.
- Need NIR observations to confirm the spectral type of the asteroids, and to confirm any scenario
- If A-types are confirmed, there is a concentration of A-type asteroids in an asteroid family.

Classification

