Introduction	Preliminaries and notations	Theory 00000000	Conclusions and outlook	Thanks O

A Fibonacci-like universe expansion on time-scale

Octavian Postavaru

CiTi, DMM - National University of Science and Technology Politehnica Bucharest

September 27, 2023

Introduction ●○○○	Preliminaries and notations	Theory 000000000	Conclusions and outlook	Thanks O
Motivatio	on			

Time-scale (Hilger)

- generalize continuous analysis and discrete analysis
- unifies differential and difference equations

Fibonacci

- describes patterns: leaf, tree, galaxies, shell of the snail, ...
- using the light curves of the Kepler telescope, it can be pointed out that the ratio between the primary and secondary pulsation of some stars satisfies the golden mean

O. Postavaru and A. Toma, *A Fibonacci-like universe expansion on time-scale*, Chaos, Solitons and Fractals **154** (2022) 111619.

Introduction 0000	Preliminaries and notations	Theory 000000000	Conclusions and outlook	Thanks O
Planck s	scale			

Fundamental question: is nature discrete or continous?

Name	Dimension	Expression	Value (SI units)
Planck length	length (L)	$l_{ m P}=\sqrt{rac{\hbar G}{c^3}}$	1.616 255(18) × 10 ⁻³⁵ m ^[7]
Planck mass	mass (M)	$m_{ m P}=\sqrt{rac{\hbar c}{G}}$	2.176 434(24) × 10 ⁻⁸ kg ^[8]
Planck time	time (T)	$t_{ m P}=\sqrt{rac{\hbar G}{c^5}}$	5.391 247(60) × 10 ⁻⁴⁴ s ^[9]
Planck temperature	temperature (Θ)	$T_{ m P} = \sqrt{rac{\hbar c^5}{G k_{ m B}^2}}$	1.416 784(16) × 10 ³² K ^[10]

Table 1: Modern values for Planck's original choice of quantities

 $\Delta x \Delta p \geq \hbar/2$

Introduction	Preliminaries and notations	Theory 000000000	Conclusions and outlook o	Thanks O
Yang-M	ills problem			

MILLENNIUM PRIZE SERIES: The Millennium Prize Problems are seven mathematics problems laid out by the Clay Mathematics Institute in 2000. They're not easy—_ a correct solution to any one results in a US\$1,000,000 prize being awarded by the institute_.

- mass gap: lattice
- o confinement: lattice
- chiral symmetry breaking: continuous theory

Introduction	Preliminaries and notations	Theory 000000000	Conclusions and outlook	Thanks o
Time-so	cale			

Examples:

Introduction	Preliminaries and notations	Theory	Conclusions and outlook	Thanks
	●੦੦	000000000	o	O
- -				

Time-scale calculus

the *forward jump* operator: $\sigma : \mathbb{T} \to \mathbb{T}$, $\sigma(t) := \inf\{s \in \mathbb{T} | s > t\}$ the *graininess* function: $\mu : \mathbb{T} \to [0, \infty)$, $\mu(t) := \sigma(t) - t$

$$f^{\Delta}(\tau) = rac{\Delta f}{\Delta au} = \lim_{s o au} rac{f(\sigma(au)) - f(s)}{\sigma(au) - s}$$

Examples: $\mathbb{T} = \mathbb{R}$, we have $f^{\Delta}(\tau) = f'(\tau)$ $\mathbb{T} = \mathbb{Z}$, then $f^{\Delta}(\tau) = f(\tau + 1) - f(\tau)$

Introduction 0000	Preliminaries and notations	Theory 000000000	Conclusions and outlook	Thanks O
Fibonac	ci			

The Fibonacci sequence is given by the formula

$$F_t = F_{t-1} + F_{t-2} \,,$$

 $F_0 = 0, F_1 = 1$

$$\frac{F_{t+1}}{F_t} \approx \varphi = \frac{1+\sqrt{5}}{2} \approx 1.61803398\ldots,$$

 $t \approx$ 7 the approximation becomes equality Binet's formula

$$F(t) = rac{arphi^t - (-arphi)^{-t}}{\sqrt{5}}$$

throughout the work we use $t \in \mathbb{T}$

Introduction	Preliminaries and notations	Theory 000000000	Conclusions and outlook	Thanks O
Fibona	cci			

Introduction	Preliminaries and notations	Theory ●00000000	Conclusions and outlook \circ	Thanks O

Lagrangian formalism on time-scale

We propose the following Lagrangian

$$\mathcal{L}\left(F(t)^{\sigma},F(t)^{\Delta}
ight)=rac{1}{2}\left(F(t)^{\Delta}
ight)^{2}+rac{C}{2}\left(F(t)^{\sigma}
ight)^{2}\,,$$

where $F(t)^{\sigma} \equiv F(\sigma(t))$. The Euler-Lagrange equation^{*} is

$$\frac{\Delta}{\Delta t} \left(\frac{\partial \mathcal{L}}{\partial F^{\Delta}} \right) - \frac{\partial \mathcal{L}}{\partial F^{\sigma}} = \mathbf{0} \,,$$

and we get the equation of motion (analogy with inverted harmonic oscillator equation)

$$F(t)^{\Delta\Delta} - CF(t)^{\sigma} = 0.$$

*O. Postavaru and A. Toma, *Symmetries for Nonconservative Field Theories on Time Scale*, Symmetry **13**(4) (2021) 552

Introduction 0000	Preliminaries and notations	Theory o●ooooooo	Conclusions and outlook	Thanks O
FLRW c	on time-scale			

The Friedmann equation

$$H^2 \equiv \left(\frac{a(t)^{\Delta}}{a(t)}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{K}{a^2(t)} + \frac{\Lambda}{3},$$

Raychaudhuri equation

$$rac{a(t)^{\Delta\Delta}}{a(t)} = -rac{4\pi G}{3}\left(
ho(t)+3P(t)
ight)+rac{\Lambda}{3}\,,$$

and covariant conservation equation

$$(\rho(t))^{\Delta} + 3 H (P(t) + \rho(t)) = 0.$$

Introduction	Preliminaries and notations	Theory oo●oooooo	Conclusions and outlook	Thanks O
Illustrati	ive examples: di	screte theo	ory ($\mathbb{T}=\mathbb{Z}$)	
()	$\Delta F(t) = F(t+1)$ osition: If $t \in \mathbb{Z}$, then	$-F(t), t\in\mathbb{Z}$		

$$F(t)^{\Delta^k} = F(t-k)$$
, with $\Delta^k = \underbrace{\Delta\Delta\dots\Delta}_{k \text{ times}}$.

Proposition: If $t \in \mathbb{Z}$, then we have

$$F(t)^{\Delta\Delta} - (2-\varphi)F(t) = 0$$
.

Proof:

$$\frac{F(t)^{\Delta\Delta}}{F(t)} = \frac{F(t-2)}{F(t-1) + F(t-2)} = 1 - \frac{F(t-1)}{F(t)} = 1 - \frac{1}{\varphi} = 2 - \varphi.$$

Introduction	Preliminaries and notations	Theory oooo●oooo	Conclusions and outlook	Thanks O
Sketch o	f proof (FLRW)			

Einstein's equation

$$R_{\mu
u}-rac{1}{2}g_{\mu
u}R-\Lambda g_{\mu
u}=8\pi GT_{\mu
u}\,,$$

 $R_{\mu\nu}$ is the Ricci tensor, *R* is the Ricci scalar, *G* is the universal gravitational constant, Λ cosmological constant, and $T_{\mu\nu}$ is the energy-momentum tensor.

For a perfect fluid, we can write

$$T_{00} =
ho(t)g_{00}, \quad T_{ii} = -p(t)g_{ii}.$$

The FLRW metric is written

$$ds^2 = c^2 dt^2 - a(t)^2 \left(\frac{dr^2}{1-kr^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right) \,,$$

where (r, θ, ϕ) are spherical coordinates, *k* is the Gaussian curvature of the space, and *a*(*t*) is known as scale factor.

Introduction	Preliminaries and notations	Theory ooooooooo	Conclusions and outlook	Thanks o
Sketch	of proof			

Christoffel symbols

$$\Gamma^{
ho}_{\mu
u} = rac{1}{2} g^{
ho\sigma} \left(\partial_{\mu} g_{
u\sigma} + \partial_{
u} g_{\mu\sigma} - \partial_{\sigma} g_{\mu
u}
ight) \, ,$$

where $\rho, \sigma, \mu, \nu = \overline{\mathbf{0}, \mathbf{3}}$.

$$\begin{split} \Gamma^{0}_{11} &= -\frac{1}{2}g^{00}(g_{11})^{\Delta} = \frac{1}{2}g^{00}\frac{(a^{2})^{\Delta}}{1-kr^{2}} \approx \frac{aa^{\Delta}}{1-kr^{2}}, \\ \Gamma^{0}_{22} &= -\frac{1}{2}g^{00}(g_{22})^{\Delta} = \frac{1}{2}g^{00}(a^{2})^{\Delta}r^{2} \approx aa^{\Delta}r^{2}, \\ \Gamma^{0}_{33} &= -\frac{1}{2}g^{00}(g_{33})^{\Delta} = \frac{1}{2}g^{00}(a^{2})^{\Delta}r^{2}\sin^{2}\theta \approx aa^{\Delta}r^{2}\sin^{2}\theta, \\ \Gamma^{1}_{01} &= \Gamma^{1}_{10} = \frac{1}{2}g^{11}(g_{11})^{\Delta} = \frac{(a^{2})^{\Delta}}{2a^{2}} \approx \frac{a^{\Delta}}{a}, \\ \Gamma^{2}_{02} &= \Gamma^{2}_{20} = \frac{1}{2}g^{22}(g_{22})^{\Delta} = \frac{(a^{2})^{\Delta}}{2a^{2}} \approx \frac{a^{\Delta}}{a}, \end{split}$$

Introduction	Preliminaries and notations	Theory ○○○○○○●○○	Conclusions and outlook o	Thanks o
Sketch	of proof			

$$\begin{split} \Gamma_{03}^{3} &= \Gamma_{30}^{3} = \frac{1}{2}g^{33}(g_{33})^{\Delta} = \frac{(a^{2})^{\Delta}}{2a^{2}} \approx \frac{a^{\Delta}}{a} \,, \\ \Gamma_{33}^{1} &= -\frac{1}{2}g^{11}\partial_{1}g_{33} = -r(1-kr^{2})\sin^{2}\theta \,, \\ \Gamma_{13}^{3} &= \Gamma_{31}^{3} = \frac{1}{2}g^{33}\partial_{1}g_{33} = \frac{1}{r} \,, \\ \Gamma_{23}^{2} &= -\frac{1}{2}g^{22}\partial_{2}g_{33} = -\sin\theta\cos\theta \,, \\ \Gamma_{23}^{3} &= \Gamma_{32}^{3} = \frac{1}{2}g^{33}\partial_{2}g_{33} = \frac{1}{\tan\theta} \,, \\ \Gamma_{22}^{1} &= -\frac{1}{2}g^{11}\partial_{1}g_{22} = -r(1-kr^{2}) \,, \\ \Gamma_{11}^{1} &= \frac{1}{2}g^{11}\partial_{1}g_{11} = \frac{kr}{1-kr^{2}} \,, \\ \Gamma_{12}^{2} &= \Gamma_{21}^{2} = \frac{1}{2}g^{22}\partial_{1}g_{22} = \frac{1}{r} \,, \end{split}$$

Introduction	Preliminaries and notations	Theory oooooooooo	Conclusions and outlook \circ	Thanks O
Sketch	of proof			

Riemann tensor

$$\mathbf{R}^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma} \,,$$

where $\rho, \sigma, \mu, \nu, \lambda = \overline{\mathbf{0}, \mathbf{3}}$.

$$R_{00}=R^{\rho}_{0\rho0}$$

$$\begin{split} R^{1}_{010} &= \partial_{1}\Gamma^{1}_{00} - \left(\Gamma^{1}_{10}\right)^{\Delta} + \Gamma^{1}_{1\lambda}\Gamma^{\lambda}_{00} - \Gamma^{1}_{0\lambda}\Gamma^{\lambda}_{10} \\ &= -\left(\Gamma^{1}_{10}\right)^{\Delta} - \left(\Gamma^{1}_{00}\Gamma^{0}_{10} + \Gamma^{1}_{01}\Gamma^{1}_{10} + \Gamma^{1}_{02}\Gamma^{2}_{10} + \Gamma^{1}_{03}\Gamma^{3}_{10}\right) \\ &= -\left(\Gamma^{1}_{10}\right)^{\Delta} - \left(\Gamma^{1}_{10}\right)^{2} \approx -\frac{a^{\Delta\Delta}}{a} \,, \end{split}$$

Introduction	Preliminaries and notations	Theory ooooooooo	Conclusions and outlook \circ	Thanks O
Sketch	of proof			

The only components of the Ricci tensor that are different from 0 are

$$R_{00}=-3rac{a^{\Delta\Delta}}{a}\,,\quad R_{ii}=-rac{g_{ii}}{a^2}\left(aa^{\Delta\Delta}+2(a^{\Delta})^2+2k
ight)\,,$$

with i = 1, 3.

The Ricci scalar which is defined $R = g^{\mu\nu}R_{\mu\nu}$, i.e.,

$$R = -6\left(rac{a^{\Delta\Delta}}{a}+rac{(a^{\Delta})^2}{a^2}+rac{k}{a^2}
ight)\,.$$

Conclusions

- Fibonacci numbers show analogies with inverted harmonic oscillator equation and FLRW
- both discrete and continous universe have the same dynamics
- discretization of time comes with the discretization of space
- Yang Mills theory: is space-time discrete or continuous?
- the theory is valid in comoving coordinates only; a covariant theory is needed

Introduction	Preliminaries and notations	Theory 000000000	Conclusions and outlook o	Thanks ●

Thank you for your attention.