

Astronomical Institute of the Romanian Academy Scientific Seminar | 30/04/2025

Al-driven Thermophysical Modelling for Small Solar System Bodies

Xian Shi Shanghai Astronomical Observatory, Chinese Academy of Sciences

Team: Shunjing Zhao (SHAO/NJU), Hanlun Lei(NJU), Man-To Hui (SHAO), et al.

Main Asteroid Belt Distance from Sun: 2.1–3.3 AU

Kuiper Belt Distance from Sun: 30–50 AU

We need thermophysical modelling for the Inversion of physical properties

- Size and shape
- Density and porosity
- Thermal inertia

•••

- Surface roughness

High

(credit: the planetary society)

We need thermophysical modelling for the Inversion of physical properties

- Size and shape
- Density and porosity
- Thermal inertia
- Surface roughness

Hera flyby of Deimos

(credit: ESA/JAXA)

We need the rmophysical modelling for the Reconstruction and/or prediction of dynamical evolution

Non-gravitational effects

- Yarkovsky
- YORP
- Sublimation recoil
- ...

We need thermophysical modelling for the Reconstruction and/or prediction of dynamical evolution

Non-gravitational effects

- Yarkovsky
- YORP
- Sublimation recoil
- ...

(Agarwal, 2018)

We need thermophysical modelling for Deciphering activity

Numerical treatment

Asteroid:

Lagerros (1996a, b, 1997, 1998), Capek & Vokrouhlicky (2005), Rozitis & Green (2011) ,...

Comet:

Mendis+(1977), Fanale+(1984), Kömle+(1992), Prialnik+(1991), Kührt+(1994), Davidsson+(2002), Capria+(2003), Gundlach+(2012), Keller+(2015), Hu+(2017, 2021),...

- solar radiation
- shape, porosity, layering, ice fraction, etc.
- conductivity, albedo, etc.
- ...

$$\begin{split} \rho C \frac{\partial}{\partial t} T &= \kappa \frac{\partial^2}{\partial x^2} T, & \rho_m C_m = (1 - f) \rho_d C_d + f \rho_i C_i, \\ \kappa_m &= h((1 - f) \kappa_d + f \kappa_i) \end{split}$$

$$\epsilon \sigma T_{x=0}^4 - \kappa_d \frac{\partial}{\partial x} T_{x=0} &= (1 - A_B) s \psi F_{\odot}, \\ -\kappa_d \frac{\partial}{\partial x} T_{x=X^-} &= -\kappa_m \frac{\partial}{\partial x} T_{x=X^+} + l Z_{(X)}, \\ -\kappa_d \frac{\partial}{\partial x} T_{x=X^-} &= -\kappa_m \frac{\partial}{\partial x} T_{x=X^+} + l Z_{(X)}, \\ \frac{\partial}{\partial x} T_{x=X^-} &= 0. \end{split}$$

• Temperature

Limitations

- High-resolution modelling
- Long-term modelling
- Large parameter space

(Jorda et al. 2016)

High computation cost

3 000 facets

2 000 000 facets

Limitations

- High-resolution modelling
- Long-term modelling
- Large parameter space

High computation cost

Differences in modeled Yarkovsky effect by assuming different shapes

(Xu et al. 2022)

Deep Learning - based thermophysical modelling

- High-resolution modelling
- Long-term modelling
- Large parameter space

Moderate computation cost

- solar radiation
- shape, porosity, layering, ice fraction, etc.
- conductivity, albedo, etc.
- ...

Deep Operator Neural Network

• Temperature

Deep Operator Neural Network (DeepONet) (Lu et al., 2019, 2021)

Universal Operator Approximation Theorem (Chen&Chen, 1995)

A neural network can accurately approximate any nonlinear operator for mapping from one space of functions to another space of functions.

Deep Operator Neural Network (DeepONet) (Lu et al., 2019, 2021)

Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

Check for updates

Lu Lu[®]¹, Pengzhan Jin^{®2,3}, Guofei Pang², Zhongqiang Zhang^{®4} and George Em Karniadakis^{®2}

DeepONet for asteroid thermophysical modelling (Zhao et al. 2024) A&A, 691, A224 (2024) https://doi.org/10.1051/0004-6361/202451789 © The Authors 2024

Deep operator neural network applied to efficient computation

Astronomy

Astrophysics

Shunjing Zhao^{1,2,3}, Hanlun Lei^{1,2, \star}, and Xian Shi³

of asteroid surface temperature and the Yarkovsky effect

Training of the network

Formation of training dataset

- Input
 - Random insolation curves
 - Random physical parameters

Ensure generalisation

- Output
 - Surface temperature derived by numerical simulations

Batch size	600	
Epochs	30,000	
nitialization	normal distribution	
Loss function	MSE	
Method	Adam ($\beta_1 = 0.8, \beta_2 = 0.99$)	
nitial learning rate	0.001	

Insolation curves: Gaussian Random Field (GRF)

Performance assessment

Performance assessment

Performance assessment

(Zhao et al. 2024)

Computation cost

(Zhao et al. 2024)

Applications High-fidelity Yarkovsky effect

Integrated high-fidelity Yarkovsky accelerations in orbit propagation

Property	Phaethon	2001 WM41
Bond albedo A_B	0.122	0.332
Emissivity ϵ	0.9	0.9
Thermal inertia Γ (J m ⁻² s ^{-1/2} K ⁻¹)	300	300
Density ρ (kg/m ³)	1500	1500
Diameter d (km)	5.1	2.5
Direction of Spin axis (λ, β)	(318°, -47°)	(72°, 61°)
Rotation period P (h)	3.6	7.7

(Zhao et al. 2024)

Applications Physical properties inferred by Yarkovsky effect (Hui et al. to be submitted)

- Previous works: Dziadura+ (2023, 2024)
- Using the trained network to generate lookup tables of Yarkovsky effect over a large parameter space

ThermoONet – Deep Learning-based network for comet thermophysical modelling (Zhao et al. in press)

ThermoONet – performance assessment

- Average error: 2%

ThermoONet – computation cost

Applications ThermoONet for fitting cometary water production rate curve

Applications ThermoONet for analyzing the variation of comet's dust mantle

Applications ThermoONet for analyzing the variation of comet's dust mantle

Applications ThermoONet for retrieving properties of comets by fitting their water production rate curves

Data from Combi et al. (2019)

Next steps

- Network training with larger training dataset
- Integration of trained networks in the analyses of observation data, e.g. Gaia, NEOWISE, etc.
- Improved networks trained with more sophisticated models and real measurements.

Thank you for your attention!

Email: <u>shi@shao.ac.cn</u>