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Stochastic processes in Astrophysics and Cosmology

Stochastic Dissipative Stormer Problem

Introduction to stochastic processes

A taste of what can be done in astrophysics and cosmology

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns
In preparation
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What does stochastic mean and why is it necessary?

(classic) Brownian Motion

Inability to keep track of experiments

Need an analytical tool to quantify this lack of knowledge
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https://www.youtube.com/watch?v=4GkuYWdH8r4&ab_channel=InstituteofPhysics

What does stochastic mean and why is it necessary?

Beyond classical BM

Inability to model nature with deterministic equations

Intrinsic randomness in nature
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What does stochastic mean and why is it necessary?

Beyond classical BM

Sun related work

M.J. Aschwanden A Statistical Fractal-Diffusive Avalanche Model of a Slowly-
Driven Self-Organized Criticality System, Astronomy & Astrophysics 539 (2011)

V. Chertoprud, B. loshpa, V. Obridko, Fine-scale Stochastic Structure of Solar
Magnetic Fields, Astronomical Society of the Pacific Conference Series, 405, Solar
Polarization, 205 (2009)
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System of many
particles in motion

Ielesinz) Establish deterministic Details on the

equation of motion (PDE) environment
e.g. the Lorentz equation

CNRA seminar June 22" 2022 7




System of many
particles in motion

(plasma) Establish deterministic Details on the

Other particles: equation of motion (PDE) environment
systematic
(friction force) +
erratic Establish source of randomness

component * interaction with other particles
e outside source

No
feedback
loop on the
outside
source
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System of many
particles in motion
(plasma) Establish deterministic
equation of motion
(PDE)

Establish source of randomness
* interaction with other particles
* outside source

Stochastic Differential Equation (SDE) of Motion
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What actually happens to the equations?

We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t)
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W(t +dt) — W(t) = VdtNET4(0,1)
dw (t) = VdtNET9(0,1)

(W()=20
(W)W (")) = min(t,t")

(dw(6)) =0

(AW ()dw (t)) = dtbyy,
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What actually happens to the equations?
We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t) W(t+dt) —W(t) = \/ENthrdt(()J)
dW (t) = VdtNE 4 (0,1)

(W()=20
(W)W (")) = min(t,t")

(dw(6)) =0
We wish to describe nature (AW (AW (t")) = dtS,,,
The hmmmm moment V(t+dt) —V(t) =VdtNiT4(0,1)

Lemons, An introduction to stochastic processes in physics, Baltimore, Maryland,
The Johns Hopkins University Press (2002)
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What actually happens to the equations?
We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t) W(t+dt) —W(t) = \/ENthfdf(oJ)
dW (t) = VdtNE 4 (0,1)

(W()=20
(W)W (")) = min(t,t")

(dw(t)) =0
We wish to describe nature (AW (£)dW (t")) = dtb,,,
Dynamical equation of the standard Brownian Motion V(t+dt) —V(t) = —yV(t)dt + p2dW (t)

Langevin equation — equation of motion
Equation for displacement X(t+dt) —X() =V(D)dt

Einstein fluctuation-dissipation %y = 2kgT

R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics, 29,
255 (1966)
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What does stochastic mean and why is it necessary?

Dynamical equation of the standard Wiener process W(t) W(t+dt) —W(t) = \/ENthfdf(oJ)
dW (t) = VdtNE 4 (0,1)

(W()=20
(W)W (")) = min(t,t")
(dw(t)) =0

(AW ()dw (t)) = dtbyy,

Dynamical equation of the standard Brownian Motion V(t+dt) —V(t) = —yV(t)dt + p2dW (t)
Langevin equation

Problems appearing in the mathematical description are addressed by
Mathematics: Ornstein—Uhlenbeck process Itd stochastic calculus

X (t + dt) —X (t) = —]/X (t)dt + O'dW(t) @ksendal, Stochastic differential Equations, An introduction with applications, Springer, 2003

Sarkka, Lecture 2: It6 Calculus and  Stochastic  Differential  Equations, 2013,

https://users.aalto.fi/~ssarkka/course_ox2013/pdf/handout2.pdf
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What does stochastic mean and why is it necessary?

Use this framework for other processes that can be described by the

Mathematics: Ornstein-Uhlenbeck process OU process (not necessarily velocity of a Brownian Particle)

X(t+dt) — X(t) = —yX(t)dt + adW (t)

The tevolution of the stochastic process X(t) is a succession of random variables:

X(t) and X(t + dt) are two different random variables as they have the probability densities
p(x, t) and p(x, t+dt) respectively

These two different random variables are related by a dynamical equation,
X(t+dt) —X(t) = F[X(t), t]
stochastic propagator

This is the update form of the differential equation dx(t) _ d_F
dt  dt

But the stochastic process X(t) is not smooth so the derivative expression is technically incorrect

% CNRA seminar June 229 2022
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Name Probability  den- | SDE Mean and Vari- | Physics
sity ance

Gaussian  white | N(p, o) standard: p = 0,

noise &(1) og=1

Wiener  process | N(p,o(t)) W(t+dt)—W(t) = | standard: p = 0,

W(t) VAtNE (0, 1) o=t

Wiener increment | N (o) dW (t) = | standard: p = 0,

dw(t) = W(t + VAtNI 0, 1) o = dt

dt) — W{(t)

OU process X ()

Y(de)— X(1)

mathematical de-

X (t)dt + odW (t) scription
Brownian motion | N(pu(t), o(t)) I (f—i—fff) —V(t) = | p(t) in Eq. (4.11), | as found in
V(t) —yV (t)dt + o(t) in Eq. (4.13) | physics. Velocity
\/ 32d \ H'dt of a particle in
erratic motion Iin
an  environment
at temperature 7',
B _ kyT
2y 2
Integral of Brown- | N(p(t), o(t)) dX (t) =V (t)dt p(t) in Eq. (4.15),
ian motion X () a(t) in Eq. (4.17)
Geometric Brown-
ian motion X () 9
X (t+dt)—X (t) = X|(t) (,u. + %n’t + aX(f.)(m-*(f))

Overview of some stochastic processes and their properties
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System of many
particles in motion
(plasma) Establish deterministic
equation of motion
(PDE)

Establish source of randomness
* interaction with other particles
*___gytside source

Stochastic Differential Equation (SDE) of Motion
Brownian Motion

V(t+dt) —V(t) = —yV(t)dt + p2dW (t)
Build on this to find trajectory and

radiation of charged particles X(t+dt) - X() = V(t)dt

%y = 2kgT
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Stochastic oscillations of general relativistic discs

Harko, Mocanu, MNRAS, 421, 3102-3110, 2012

CNRA seminar June 22" 2022

Big Bang
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Explanation of Active Galactic Nuclei observational features
Modelling tools for accretion disk dynamics

Magnetized disk and fractal perturbation

ﬁ CNRA seminar June 22" 2022

The Baily A

The magnetic field did it

Mocanu, Marcu, Astronomische Nachrichten, 333, pages 166—173, 2012
Mocanu, Sandor, Astrophys. Space Sci., 279, pages 147-153, 2012

Mocanu, Grumiller, Phys. Rev. D, 85, 105022, 2012

Mocanu, Pardi, Magyar, Marcu, MNRAS, 439, 3790 - 3797, 2014

Harko, Leung, Mocanu, European Physical Journal C, (2014), 74:2900

Leung, Mocanu, Harko, Journal of Astrophysics and Astronomy (2014) 35, 449-452
Danila, Harko, Mocanu, MNRAS, 453, 3, 2982-2991, 2015

Harko, Mocanu, Stroia, Astrophysics and Space Science 357 (2015), 1-9

Danila, Marcu, Mocanu, Research in Astronomy and Astrophysics, 15 (2015), 3, 327-332
Harko, Mocanu, European Journal of Physics C, 76, 160 (2016)

Brownian Motion in an environment in which a deterministic Magnetic field exists, but it is not time dependent

23



@he Bailg N
Theoretical and numerical update of the mode|  emsie saisi

Mocanu, Romanian Astronomical Journal, 29, 1, 41-57, 2019 Main result: Trajectories of Charged Particles Undergoing Brownian
Motion in a Time-Dependent Magnetic Field (deterministic)

Mocanu, Romanian Reports in Physics, 72, 1, 105, 2020
In the limit of constant magnetic field, recovers the results in

Mocanu, /EEE Transactions on Plasma Science, 99, 1:9, 2021 Lemons & Kaufman, Brownian Motion of a Charged Particle in a
Magnetic Field, IEEE Transactions on Plasma Science 27, 5, 1288 (1999)

In preparation: Mocanu, Trajectories of Charged Particles Undergoing Brownian
Motion in a Time-Dependent Magnetic Field (stochastic)
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Cosmology,

Black
Holes

AGN
Planet
Hunting
The Cosmic
Sexiness Ladder

Milky Way,
CV’'s etc

The Sun

A

Sexiness

Information

Y

J.J. Drake
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Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns

In preparation

Charged particle in motion:

Results:

Tools employed:

Applications to observations:

CNRA seminar June 22" 2022

classical and non-relativistic
Stormer (motion in a dipole magnetic field)
dissipation

dynamical behavior
radiation (by different mediation procedures)
escape rate

analytic
numerical
solve SDE (Milstein Scheme)
apply the 0-1 test for chaos
?
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Lorentz-Langevin equation Magnetic dipole created by a current loop in the xOy plane

d’r s A= s ia9)B=vxa
mﬁzqva—ymv+mf —r—g(—yx‘FxJ’), =VX
(ff®)=0 d’x 3az . . T
o s a 2= s 0z —agy-yitf
{f; (t)f; (t2)) = W5ij5(t1 — ;)
d’y  3az | T
TR (xz—zx)—aﬁx—yy+fy
d*z 3az _ L
W=F(Xy—yx)—)/2+fz
qM,
a =
m

Stochastic processes are not smooth, so the derivative notation is understood to be formal

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns

CNRA seminar June 22" 2022 -
In preparation




Make equations dimensionless

Xi
Xi = —
To

T=[t

ED¢ 7
—— =3 —

dt? RS

d%y VA

dr? _3E

2z _,
dt2 RS

dx;

T dr

CNRA seminar June 22" 2022

. . 1. .
YZ—-Z7Y)——=Y —-TX + &3
R3
XZ—-7X —iX—rY+c1>S
( ) R3 Y

(XY —YX)—TZ + &5

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns
In preparation
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Make equations dimensionless Solve coupled system of dimensionless SDEs with Millstein scheme

X; Giles, Advanced Monte Carlo Methods, Oxford University
Xi = — dS(T) — A(S)d‘[ + B(S)dW(T) Mathematical Institute,
To https://people.maths.ox.ac.uk/gilesm/talks/giles_module6.pdf
T=pt ds(t) = (dVy, dX, dVy,dY,dVy, dZ)
d?X Z 1 Z 1 _
=3 (VZ - 2v) __y X + @ Ay(8) = 305 WZ = VzY) =3 Vy — TV Ay(S) =V
d*Y 1 s A5(S) = —3—% (VXZ V,X) — i — TV,
== —3—(XZ zx)——x Y + o5 Ay(S) =Ny
d?Z As(S) = 3i (VyY =W X) =TV, Ae(S) =V;
—7 = 3— (XY —YX) —TZ + @3 R®
¥ = aX; B(S) 6 X 6 matrix
e

Bi1 = B33 = Bss = 1; Bytper = 0

dW (z) = (dWx (1), 0,dWy (1), 0,dW, (7))

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns 30
In preparation
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Solve coupled system of SDEs with Millstein scheme
dS(t) = A(S)dt + B(S)dW (1)
dS(t) = (dVy, dX,dVy,dY,dV,,dZ)

T = nh

Dimensionless velocity and position
Si(n + 1) = Si(n) + AL(S(n))h + Bl](n)dWl(n)Sl]

Dimensionless acceleration

a; = A;(S) + 0g; Ny;

N,; —no. drawn at each timestep and for each vector
component from a standard unit normal

CNRA seminar June 227 2022 :—|arko & M:canu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns
n preparation
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Classical Stormer Problem (CSP)

d?Xx zZ . . 1.

P:35(1/2—21/)—EY Ny

dZY_ Z ; 1 0 ' 0.008F ' ' ' ] o7

a2 = 3 (R2-2X) - 3% L B o

dZZ_3Z TV — VX 1_07-'_./" o_ooeé ] Ei

aw ST 0w
Zgo| 0.003% E?
ot IWIWIIUVOOVOY oo L o
1ol 0 50 100 150 200 250 300 350 00000 00005 00010 00015  0.0020

x

)

Figure 1. Trajectory. emitted power, and PSD of the emitted power for X = 0.7, ¥ = 0.8, Zy = 0, V iy = 0.1. V0 = 0, Vo = 0, h = 0.001, L = 350000, the
PSD was obtained by sampling the P(7) at timesteps of A = 0.001, making the length of the array L = 350000. The PSD is applied to the same space as for
the other cases and is thus comparable directly to the other PSDs.

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns 32
In preparation
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Classical Stormer Problem

1500F
X 32 z-av)-Ly 04 1
@z =g V=) oo : | ol '
oo} =k ?
azy zZ . . 1. -0.2| : |
—=-3=(XZ-7ZX)—-—=X -0.4}, I 500 1
de RS ( ) R3 B D~ C ] M M
PZ_ 7 MMMJUU TAATA, U. 1ok . . . ]
dr2 3 RS (XY - YX) 0 50 100 150 200 0.0000 0.0005 0.0010 00015 0.0020
T w
Figure 2. Trajectory, emitted power, and PSD of the emitted power for Xg = 0.7, ¥y = 0.8, Zy = 0, Vg = 0, V0 = 0.1, Vo = 0.1, h = 0.001, L = 230000
25L
20F
0.4y
02 1o 15F
00l g2
-02} 10F
-0.41 ]
N 1 N N N N 1 N N N N 1 L N N N 1 |- D_I 1 1 1 1
50 100 150 200 0.0000 0.0005 0.0010 0.0015 0.0020
T o
Figure 3. Trajectory, emitted power, and PSD of the emitted power for Xp = 0.7. ¥y = 0.8, Zyp = 0. V.0 = 0.01. Vg = 0.1, Vo = 0.1. A = 0.001, L = 210000
CNRA seminar June 227 2022 Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns 33
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Confirm Chaos in the Classical Stormer Problem

3 __l T T T T 0-90[]' [ T T T T T T |'|..|..I
0.25F : . 1 ool e ]
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Figure 4. Results of the 0-1 chaos test for
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Gottwald & Melbourne, A new test for chaos in deterministic systems, Proceedings of the Royal Society A,

2w

T = 500000 and ditferent values of ¢ for the three CSP cases discussed to far.
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Figure 5. The function p(t) for the CSP problem: lett: trajectory from Figure 1. middle: trajectory from Figure 2. right: trajectory from Figure 3

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns
In preparation
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Classical Stormer Problem with Friction

Y
X 3L yzozv)-Lv-x
dr2~ RS R3 _1/
d2y z ., 1. ro¢”
—— =3 (XZ-2X)-—=X-TY 0.008f .
dTZ RS ( ) 1?3 051. 0.007F 0255
Z5o! 0.006 0.20f
2 ] :
d—Z=3£(XY—YX)—FZ' < 0005 o 015
dz2 RS -0-5;‘_ o 0.004f 18 o0k
-10y/ 0.003f '
e 0.002f 0.05
o goptp TRV RUVUVY 0.00f! . : : ]
. L 0 50 100 150 200 250 300 350 00000 00005 00010 00016 00020
1 T w

Figure 8. Trajectory. emitted power, and PSD of the emitted power in the Dissipative Stérmer Problem for Xp = 0.7, Yp = 0.8, Zy = 0. V9 = 0.1, Vo = 0,
Voo =0, h=0.001, L = 580000 and I = 1073,

Harko & Mocanu, The stochastic-dissipative Stormer problem — trajectories and radiation patterns
In preparation
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Classical Stormer Problem with Friction

2 10000 i
d=X zZ . . 1, .
7= 3%% (YZ—ZY)—FY—FX 04, 8000
02} L
2y 7 1 Z o0} o 6000
d ; ; ; : -02| “ a000f
i —SF(XZ—ZX)—EX—FY S04,
e 2000F
dZZ Z - &IA—_A_J IL—A—,\—;‘- D_u ) ) ) 5
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Figure 12. Trajectory, emitted power, and PSD of the emitted power in the Dissipative Stormer Problem for X = 0.7. ¥y = 0.8. Zp = 0. Vo = 0. V9 = 0.1,
Voo =0.1. h=0.001, L = 260000 and T = 1073,
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Figure 13. Trajectory. radiation and PSD for Xy = 0.7.¥p = 0.8, Zg = 0, Vo, p = 0. Vyp = 0.1, Vo = 0.1. A = 0.001, L = 200000 and T" = 1072,
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Figure 19. Brownian Motion in the Stirmer Problem: trajectories for Xp = 0.7, ¥p = 0.8, Zg = 0, Vi = 0.1, Vo = 0, Vp = 0, with upper row: g = 1T,

middle row g = 107° and lower row oy = 107 for all rows, from left toright I [lt]'l. 1=, ]1?':}
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Figure 20. Brownian Motion in the Stirmer Problem: trajectories for Xy = 0.7, Yo = 0.8, Zp = 0, Vep = 0, Vo = 0L1, Vg = 0.1, with upper row: crg = 107,

middle row org = 107% and lower row Fg = 107¥; for all rows, from left toright " € [lt]'l. 1077, ]ﬂ':}
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Figure 44. Brownian Motion in the Stirmer Problem: energy (left) and distance (right) for a sample trajectory with Xp = 0.7, ¥ = (L8, Zy = 0, Vi = 0.01,
Vyp=0.1, Vg =001, h = 00001, L = 150000, org = 1077, T =107

= percent of escape trajectories out of 10% identically set trajectories

= trajectory for which the last 103 steps are well fitted (R2> 0.9) by a straight line
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Brownian Motion in the Classical Stormer Problem — Escape rate
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Brownian Motion in the Stormer Problem: escape rate as a function of noise magnitude for an ensemble of trajectories for i = 0.001, L = 150000,
r =107, Xo = 0.7, Yy = 0.8, Zyg = 0, with Vo = 0.01, Vyo = 0.1, V2o = 0.1 green. Vyo = 0.1, Vyo = 0. Vzo = Ored, and Vyp = 0.1, Vyo = 0.1.
V.o = 0.1 blue. Each ensemble has Ny,q; realizations and og is the only parameter which varies between ensembles. The fitting function has the equation

—140x 10% g +2.34 x 107 og + 3.09 for the green fit. =1.75 x 1080% +2.77 x 107 og — 6.2 for the red fit and —1.19 x 108§ +2.08 x 10° org +9.07 for

the blue fit.
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