Stochastic processes in Astrophysics and Cosmology

Gabriela Blaga (**Mocanu**) Romanian Academy, Cluj-Napoca Branch Astronomical Observatory

CNRA seminar June 22nd 2022

Stochastic processes in Astrophysics and Cosmology

Introduction to stochastic processes

A taste of what can be done in astrophysics and cosmology

Stochastic processes in Astrophysics and Cosmology Stochastic Dissipative Stormer Problem

Introduction to stochastic processes

A taste of what can be done in astrophysics and cosmology

Harko & **Mocanu**, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

(classic) Brownian Motion

Inability to keep track of experiments

Need an analytical tool to quantify this lack of knowledge

Beyond classical BM

Inability to model nature with deterministic equations

Intrinsic randomness in nature

Beyond classical BM

Sun related work

M.J. Aschwanden A Statistical Fractal-Diffusive Avalanche Model of a Slowly-Driven Self-Organized Criticality System, Astronomy & Astrophysics 539 (2011)

V. Chertoprud, B. Ioshpa, V. Obridko, *Fine-scale Stochastic Structure of Solar Magnetic Fields,* Astronomical Society of the Pacific Conference Series, 405, Solar Polarization, 205 (2009)

Modeling assumptions

System of many particles in motion (plasma)

Establish deterministic equation of motion (PDE) e.g. the Lorentz equation

Details on the environment

What actually happens to the equations? We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t)

 $W(t + dt) - W(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $dW(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $\langle W(t) \rangle = 0$ $\langle W(t)W(t') \rangle = \min(t,t')$ $\langle dW(t) \rangle = 0$ $\langle dW(t)dW(t') \rangle = dt\delta_{tt'}$

What actually happens to the equations? We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t)

 $W(t + dt) - W(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $dW(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $\langle W(t) \rangle = 0$ $\langle W(t)W(t') \rangle = \min(t,t')$ $\langle dW(t) \rangle = 0$ $\langle dW(t)dW(t') \rangle = dt\delta_{tt'}$

 $V(t+dt) - V(t) = \sqrt{dt}N_t^{t+dt}(0,1)$

We wish to describe nature

The hmmmm moment

Lemons, *An introduction to stochastic processes in physics*, Baltimore, Maryland, The Johns Hopkins University Press (2002)

What actually happens to the equations? We want to work our way up into describing the observed Brownian Motion of particles

Dynamical equation of the standard Wiener process W(t)

 $W(t+dt) - W(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $dW(t) = \sqrt{dt} N_t^{t+dt}(0,1)$ $\langle W(t) \rangle = 0$ $\langle W(t)W(t')\rangle = \min(t,t')$ $\langle dW(t) \rangle = 0$ $\langle dW(t)dW(t')\rangle = dt\delta_{tt}$ $V(t + dt) - V(t) = -\gamma V(t)dt + \beta^2 dW(t)$ X(t + dt) - X(t) = V(t)dt $\beta^2 \gamma = 2k_B T$

We wish to describe nature

Dynamical equation of the standard Brownian Motion Langevin equation – equation of motion

Equation for displacement

Einstein fluctuation-dissipation

R. Kubo, *The fluctuation-dissipation theorem,* Reports on Progress in Physics, 29, 255 (1966)

Dynamical equation of the standard Wiener process W(t)

 $W(t + dt) - W(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $dW(t) = \sqrt{dt}N_t^{t+dt}(0,1)$ $\langle W(t) \rangle = 0$ $\langle W(t)W(t') \rangle = \min(t,t')$ $\langle dW(t) \rangle = 0$ $\langle dW(t)dW(t') \rangle = dt\delta_{tt'}$

Dynamical equation of the standard Brownian Motion Langevin equation

Mathematics: Ornstein–Uhlenbeck process $X(t + dt) - X(t) = -\gamma X(t)dt + \sigma dW(t)$ $V(t + dt) - V(t) = -\gamma V(t)dt + \beta^2 dW(t)$

Problems appearing in the mathematical description are addressed by Itô stochastic calculus

Øksendal, Stochastic differential Equations, An introduction with applications, Springer, 2003 Särkkä, Lecture 2: Itô Calculus and Stochastic Differential Equations, 2013, https://users.aalto.fi/~ssarkka/course_ox2013/pdf/handout2.pdf

Mathematics: Ornstein–Uhlenbeck process $X(t + dt) - X(t) = -\gamma X(t)dt + \sigma dW(t)$ Use this framework for other processes that can be described by the OU process (not necessarily velocity of a Brownian Particle)

The tevolution of the stochastic process X(t) is a succession of random variables:

X(t) and X(t + dt) are two different random variables as they have the probability densities p(x, t) and p(x, t+dt) respectively

These two different random variables are related by a dynamical equation, X(t + dt) - X(t) = F[X(t), t]stochastic propagator

This is the update form of the differential equation $\frac{dX(t)}{dt} = \frac{dF}{dt}$

But the stochastic process X(t) is not smooth so the derivative expression is technically incorrect

Name	Probability den-	SDE	Mean and Vari-	Physics
	sity		ance	
Gaussian white	$\mathcal{N}(\mu, \sigma)$		standard: $\mu = 0$,	
noise $\xi(t)$			$\sigma = 1$	
Wiener process	$\mathcal{N}(\mu, \sigma(t))$	W(t+dt) - W(t) =	standard: $\mu = 0$,	
W(t)		$\sqrt{dt}N_t^{t+dt}(0,1)$	$\sigma = t$	
Wiener increment	$\mathcal{N}(\mu, \sigma)$	dW(t) =	standard: $\mu = 0$,	
dW(t) = W(t +		$\sqrt{dt}N_t^{t+dt}(0,1)$	$\sigma = dt$	
dt) - W(t)				
OU process $X(t)$		X(t+dt) - X(t) =		mathematical de-
		$\mu X(t)dt + \sigma dW(t)$		scription
Brownian motion	$\mathcal{N}(\mu(t), \sigma(t))$	V(t+dt) - V(t) =	$\mu(t)$ in Eq. (4.11),	as found in
V(t)		$-\gamma V(t)dt$ +	$\sigma(t)$ in Eq. (4.13)	physics. Velocity
		$\sqrt{\beta^2 dt} N_t^{t+dt}(0,1)$		of a particle in
				erratic motion in
				an environment
				at temperature T ,
				$\frac{\beta^2}{2\gamma} = \frac{k_B T}{2}$
Integral of Brown-	$\mathcal{N}(\mu(t), \sigma(t))$	dX(t) = V(t)dt	$\mu(t)$ in Eq. (4.15),	
ian motion $X(t)$			$\sigma(t)$ in Eq. (4.17)	
Geometric Brown-				
ian motion $X(t)$			(2	\ \
		X(t+dt) - X(t) = X	(t) $\left(\mu + \frac{\sigma^2}{2}dt + \sigma X\right)$	t)dW(t)

Overview of some stochastic processes and their properties

Stochastic oscillations of general relativistic discs Harko, **Mocanu**, *MNRAS*, 421, 3102–3110, 2012

Ref.	Spectral band	Object	Comments
Ioshpa et al. (2007)	Magnetic Doppler Imager (MDI)	The Sun	observation: small scale stochastic structure of the solar magnetic field, fractal index;
MacLeod et al. (2010)	optical	9000 quasars	observation: the smooth PSD of LC on thermal timescale suggests a chaotic or stochastic origin for vari- ability;
Carini et al. (2011)	optical	0716+714	observation: the observed varia- tions are determined by the size of the turbulent regions (and not the electron cooling or accelera- tion timescales intrinsic to those timescales); LCs do not show any sign of periodicity; conclude that the observed variability is a result of a fractional noise process, consis- tent with the variations arising from a turbulent process;
Wagner & Witzel (1995)	optical	0954+658	observation: the outbursts are self similar, with exponential slopes of constant e-folding time ¹
Hoshino & Takeshima (1993)	X-Ray	X-Ray Binaries, Active Galactic Nuclei	observation: can be well interpreted as Self Organized state of plasma turbulence in the accreting plasmas;
Azamia et al. (2005)	R, band	S5 0716+714	observation: analysis with Fourier transform show that a fractional noise process is responsible for the variations;
Leung st al. (2011a)	optic and X-Ray	Bl Lac	observation calculate the fractal di- mension and found that the source exhibits an almost pure random walk behaviour.
Uttley et al. (2005)	X-Ray	small BHs	observation: the nms-flux relation says that the underlying variability process must be multiplicative

Ref.	Spectral band	Object	Comments
Malgae of al	Y Bay	ለጥድ	observation: whose of P
(2004)	л-цау	J1118+48	Observation. 7785 C. D
Ohsuga et el. (2005)	_	Sgr*	simulation: MC radiative transfer simulation in 3D MHD show that the MHD flow is intrinsically time varying and exhibits fractal struc- ture;
Kawaguchi et al. (2000); Takeuki et al. (1995); Kawaguchi et al. (1998)	-	_	theory and simulation: fractal mag- netic fields produce $f^{-\beta}$ fluctua- tions;
Kelly et al. (2009)	optical	100 quasars	observation and simulation: LC on thermal timescales result from fluc- tuations that are driven by an un- derlying stochastic process, such as a turbulent magnetic field;
Kelly et al. (2009)	X-Ray	small mass (XRBs)	observation and theory: the black hole is a Gaussian stochastic process in the logarithm of the flux;
Janiuk & Czerny (2007)	X-Ray		simulation variability is driven by variations in a magnetic field with the magnetic field density being modelled as an AR(1) process; $dX(t) = -\frac{1}{\tau}X(t)dt + \sigma\sqrt{dt}\epsilon(t) + bdt,$ (B.1) where $b, \tau, \sigma > 0, \epsilon(t) \in \mathcal{N}(0, 1),$ making $X(t) \in \mathcal{N}(b\tau, \frac{\tau\sigma^2}{2})$. If $X(t)$ is a CAR(1) process theory says that $P_X(f) = \frac{2\sigma^2\tau^2}{1 + (2\pi\tau f)^2}.$ (B.2)
Kawaguchi et al. (2000)	_	_	simulation examine the 3d MHD simulation data of Machida <i>et al.</i> (2000) and find that a magnetized accretion disk exhibits both $f^{-\beta}$ fluctuations and a fractal magnetic field structure, with the fractal dimension of ≈ 1.9 ;

D 4	a . 1	01	
Ref.	Spectral band	Object	Comments
Ioshpa et al. (2007)	Magnetic Doppler Imager (MDI)	The Sun	observation small scale s structure of the solar magn fractal index;
MacLeod et el. (2010)	optical	9000 quasars	observation the smooth LC on thermal timescale s chaotic or stochastic origin ability;
Carini & al. (2011)	optical	0716+714	observation the observe tions are determined by of the turbulent regions the electron cooling or tion timescales intrinsic timescales); LCs do not s sign of periodicity; concl- the observed variability is of a fractional noise proces tent with the variations aris a turbulent process;
Wagner & Witzel (1995)	optical	0954+658	observation the outburst: similar, with exponential constant e-folding time ¹
Hoshino & Takeshima (1993)	X-Ray	X-Ray Binaries, Active Galactic Nuclei	observation: can be well in as Self Organized state o turbulence in the accreting
Azamia et al. (2005)	R, band	S5 0716+714	observation: analysis with transform show that a f noise process is responsibl variations;
Leung et al. (2011a)	optic and X-Ray	Bl Lac	observation calculate the f mension and found that the exhibits an almost pure walk behaviour.
Uttley at al. (2005)	X-Ray	small BHs	observation the mms-flux says that the underlying v process must be multiplica

Ref.	Spectral band	Object	Comments	
J Malzac of	δI I X-R₂v	। xmr.	I observation: wros or	B re transfe show tha ically tim ctal struc actal mag
Transer, August 33, 1916	e T	ai	ly U	fluctua on: LC of from fluc by an un ss, such a
The magnet	ic fiel	d d	id it	l; the blac tic proces ux;
Incredible as it may even, it has been confirmed that a large matter invessor fleet has landed on south tornght First vessels were sighted over Oceat Britan, Damank and Norway	busded to Pole and taken in invallers Afterward in order to major of earth. The	s they s o eppro- e streets	to North Ran lous was fully by the imp plit spect that such most sels and the the filled as bab	driven b field wit sity bein Doess; $\overline{tt}\epsilon(t)+bd$ (B.1 $\in \mathcal{N}(0,1)$ $\frac{1}{2}$). If $X(t)$ y says that f. (B.2)
scready in the late evening from where, as further reports indicate, the fleet	thousand homes, m their paper	ny only ny only nes	field structure, with	: 3d MH uida et a nagnetize both f ⁻ accol magnet: the fractal d

Explanation of Active Galactic Nuclei observational features Modelling tools for accretion disk dynamics Magnetized disk and fractal perturbation

Mocanu, Marcu, Mocanu, Sándor, Mocanu, Grumiller, Mocanu, Pardi, Magyar, Marcu, Harko, Leung, Mocanu, Leung, Mocanu, Harko, Danila, Harko, Mocanu, Harko, Mocanu, Stroia, Danila, Marcu, Mocanu, Harko, Mocanu, Astronomische Nachrichten, 333, pages 166–173, 2012 Astrophys. Space Sci., 279, pages 147-153, 2012 Phys. Rev. D, 85, 105022, 2012 MNRAS, 439, 3790 – 3797, 2014 European Physical Journal C, (2014), 74:2900 Journal of Astrophysics and Astronomy (2014) 35, 449-452 MNRAS, 453, 3, 2982–2991, 2015 Astrophysics and Space Science 357 (2015), 1-9 Research in Astronomy and Astrophysics, 15 (2015), 3, 327-332 European Journal of Physics C, 76, 160 (2016)

Brownian Motion in an environment in which a deterministic Magnetic field exists, but it is not time dependent

Theoretical and numerical update of the model

Mocanu, Romanian Astronomical Journal, 29, 1, 41-57, 2019

Mocanu, Romanian Reports in Physics, 72, 1, 105, 2020

Mocanu, IEEE Transactions on Plasma Science, 99, 1:9, 2021

Main result: Trajectories of Charged Particles Undergoing Brownian Motion in a Time-Dependent Magnetic Field (deterministic)

In the limit of constant magnetic field, recovers the results in Lemons & Kaufman, *Brownian Motion of a Charged Particle in a Magnetic Field,* IEEE Transactions on Plasma Science 27, 5, 1288 (1999)

In preparation: **Mocanu**, *Trajectories of Charged Particles Undergoing Brownian* Motion in a Time-Dependent Magnetic Field (stochastic)

Harko & Mocanu, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

?

Charged particle in motion:	classical and non-relativistic Stormer (motion in a dipole magnetic field) dissipation Brownian Motion – Stochastic differential equation of motion
Results:	dynamical behavior radiation (by different mediation procedures) escape rate
Tools employed:	analytic numerical solve SDE (Milstein Scheme) apply the 0-1 test for chaos

Applications to observations:

Lorentz-Langevin equation

$$m\frac{d^{2}\boldsymbol{r}}{dt^{2}} = q\boldsymbol{v} \times \boldsymbol{B} - \gamma m\boldsymbol{v} + m\boldsymbol{f}^{s}$$
$$\langle f_{i}^{s}(t) \rangle = 0$$
$$\langle f_{i}^{s}(t_{1})f_{j}^{s}(t_{2}) \rangle = \frac{a}{m^{2}}\delta_{ij}\delta(t_{1} - t_{2})$$

Magnetic dipole created by a current loop in the *xOy* plane

$$\boldsymbol{A} = \frac{M_z 1}{r^3} (-y \hat{\boldsymbol{x}} + x \hat{\boldsymbol{y}}), \boldsymbol{B} = \nabla \times \boldsymbol{A}$$

$$\frac{d^2x}{dt^2} = \frac{3\alpha z}{r^5} (\dot{y}z - \dot{z}y) - \alpha \frac{1}{r^3} \dot{y} - \gamma \dot{x} + f_x^s$$
$$\frac{d^2 y}{dt^2} = -\frac{3\alpha z}{r^5} (\dot{x}z - \dot{z}x) - \alpha \frac{1}{r^3} \dot{x} - \gamma \dot{y} + f_y^s$$
$$\frac{d^2 z}{dt^2} = \frac{3\alpha z}{r^5} (\dot{x}y - \dot{y}x) - \gamma \dot{z} + f_z^s$$

$$\alpha = \frac{qM_z}{m}$$

Stochastic processes are not smooth, so the derivative notation is understood to be formal

Make equations dimensionless

$$\begin{aligned} X_i &= \frac{x_i}{r_0} \\ \tau &= \beta t \\ \frac{d^2 X}{d\tau^2} &= 3\frac{Z}{R^5} \left(\dot{Y}Z - \dot{Z}Y \right) - \frac{1}{R^3} \dot{Y} - \Gamma \dot{X} + \Phi_X^s \\ \frac{d^2 Y}{d\tau^2} &= -3\frac{Z}{R^5} \left(\dot{X}Z - \dot{Z}X \right) - \frac{1}{R^3} \dot{X} - \Gamma \dot{Y} + \Phi_Y^s \\ \frac{d^2 Z}{d\tau^2} &= 3\frac{Z}{R^5} \left(\dot{X}Y - \dot{Y}X \right) - \Gamma \dot{Z} + \Phi_Z^s \\ \dot{X}_i &= \frac{dX_i}{d\tau} \end{aligned}$$

Make equations dimensionless

$$X_i = \frac{x_i}{r_0}$$

 $\tau = \beta t$

$$\frac{d^2 X}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{Y}Z - \dot{Z}Y \right) - \frac{1}{R^3} \dot{Y} - \Gamma \dot{X} + \Phi_X^s$$

$$\frac{d^2Y}{d\tau^2} = -3\frac{Z}{R^5}\left(\dot{X}Z - \dot{Z}X\right) - \frac{1}{R^3}\dot{X} - \Gamma\dot{Y} + \Phi_Y^s$$

$$\frac{d^2 Z}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{X}Y - \dot{Y}X \right) - \Gamma \dot{Z} + \Phi_Z^s$$

$$\dot{X_i} = \frac{dX_i}{d\tau}$$

Solve coupled system of dimensionless SDEs with Millstein scheme

$$dS(\tau) = A(S)d\tau + B(S)dW(\tau)$$

Giles, Advanced Monte Carlo Methods, Oxford University Mathematical Institute, https://people.maths.ox.ac.uk/gilesm/talks/giles_module6.pdf

$$d\boldsymbol{S}(\tau) = (dV_X, dX, dV_Y, dY, dV_Z, dZ)$$

$$A_{1}(\mathbf{S}) = 3\frac{Z}{R^{5}} (V_{Y}Z - V_{Z}Y) - \frac{1}{R^{3}}V_{Y} - \Gamma V_{X} \qquad A_{2}(\mathbf{S}) = V_{X}$$
$$A_{3}(\mathbf{S}) = -3\frac{Z}{R^{5}} (V_{X}Z - V_{Z}X) - \frac{1}{R^{3}}V_{X} - \Gamma V_{Y} \qquad A_{4}(\mathbf{S}) = V_{Y}$$

$$A_{5}(S) = 3\frac{Z}{R^{5}}(V_{X}Y - V_{Y}X) - \Gamma V_{Z} \qquad A_{6}(S) = V_{Z}$$

 $B(S) \quad 6 \times 6 \text{ matrix}$ $B_{11} = B_{33} = B_{55} = 1; B_{other} = 0$

 $d\boldsymbol{W}(\tau) = \left(dW_X(\tau), 0, dW_Y(\tau), 0, dW_Z(\tau)\right)$

Harko & Mocanu, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

Solve coupled system of SDEs with Millstein scheme

 $dS(\tau) = A(S)d\tau + B(S)dW(\tau)$

 $d\boldsymbol{S}(\tau) = (dV_X, dX, dV_Y, dY, dV_Z, dZ)$

 $\tau = nh$

Dimensionless velocity and position $S_i(n+1) = S_i(n) + A_i(\mathbf{S}(n))h + B_{ij}(n)dW_i(n)\delta_{ij}$

Dimensionless acceleration

 $a_i = A_i(\mathbf{S}) + \sigma_{\Phi i} N_{2i}$

 N_{2i} —no. drawn at each timestep and for each vector component from a standard unit normal

Classical Stormer Problem (CSP)

Figure 1. Trajectory, emitted power, and PSD of the emitted power for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.1$, $V_{y0} = 0$, $V_{z0} = 0$, h = 0.001, L = 350000, the PSD was obtained by sampling the $P(\tau)$ at timesteps of h = 0.001, making the length of the array L = 350000. The PSD is applied to the same space as for the other cases and is thus comparable directly to the other PSDs.

Classical Stormer Problem

$$\frac{d^2 X}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{Y}Z - \dot{Z}Y \right) - \frac{1}{R^3} \dot{Y}$$
$$\frac{d^2 Y}{d\tau^2} = -3\frac{Z}{R^5} \left(\dot{X}Z - \dot{Z}X \right) - \frac{1}{R^3} \dot{X}$$
$$\frac{d^2 Z}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{X}Y - \dot{Y}X \right)$$

Figure 2. Trajectory, emitted power, and PSD of the emitted power for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0$, $V_{y0} = 0.1$, $V_{z0} = 0.1$, h = 0.001, L = 230000

Figure 3. Trajectory, emitted power, and PSD of the emitted power for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.01$, $V_{y0} = 0.1$, $V_{z0} = 0.1$, h = 0.001, L = 210000

CNRA seminar June 22nd 2022

Harko & Mocanu, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

Confirm Chaos in the Classical Stormer Problem

Gottwald & Melbourne, *A new test for chaos in deterministic systems,* Proceedings of the Royal Society A, 460, 2042 (2004)

Figure 4. Results of the 0-1 chaos test for T = 500000 and different values of t for the three CSP cases discussed to far.

Figure 5. The function $p(\tau)$ for the CSP problem; left: trajectory from Figure 1, middle: trajectory from Figure 2, right: trajectory from Figure 3

CNRA seminar June 22nd 2022

Harko & Mocanu, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

Classical Stormer Problem with Friction

 $\frac{d^2 X}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{Y}Z - \dot{Z}Y \right) - \frac{1}{R^3} \dot{Y} - \Gamma \dot{X}$ $\frac{d^2 Y}{d\tau^2} = -3\frac{Z}{R^5} \left(\dot{X}Z - \dot{Z}X \right) - \frac{1}{R^3} \dot{X} - \Gamma \dot{Y}$ $\frac{d^2 Z}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{X}Y - \dot{Y}X \right) - \Gamma \dot{Z}$

Figure 8. Trajectory, emitted power, and PSD of the emitted power in the Dissipative Störmer Problem for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.1$, $V_{y0} = 0$, $V_{z0} = 0$, h = 0.001, L = 580000 and $\Gamma = 10^{-3}$.

Classical Stormer Problem with Friction

$$\frac{d^2 X}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{Y}Z - \dot{Z}Y \right) - \frac{1}{R^3} \dot{Y} - \Gamma \dot{X}$$
$$\frac{d^2 Y}{d\tau^2} = -3\frac{Z}{R^5} \left(\dot{X}Z - \dot{Z}X \right) - \frac{1}{R^3} \dot{X} - \Gamma \dot{Y}$$
$$\frac{d^2 Z}{d\tau^2} = 3\frac{Z}{R^5} \left(\dot{X}Y - \dot{Y}X \right) - \Gamma \dot{Z}$$

Figure 12. Trajectory, emitted power, and PSD of the emitted power in the Dissipative Störmer Problem for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.1$, $V_{z0} = 0.1$, h = 0.001, L = 260000 and $\Gamma = 10^{-3}$.

Figure 13. Trajectory, radiation and PSD for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0$, $V_{y0} = 0.1$, $V_{z0} = 0.1$, h = 0.001, L = 200000 and $\Gamma = 10^{-2}$.

Brownian Motion in the Classical Stormer Problem

Escape appearing in otherwise closed orbits (non-chaotic ICs)

Figure 19. Brownian Motion in the Störmer Problem: trajectories for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.1$, $V_{y0} = 0$, $V_{z0} = 0$, with upper row: $\sigma_S = 10^{-7}$, middle row $\sigma_S = 10^{-6}$ and lower row $\sigma_S = 10^{-5}$; for all rows, from left to right $\Gamma \in \{10^{-4}, 10^{-3}, 10^{-2}\}$

CNRA seminar June 22nd 2022

Harko & Mocanu, *The stochastic-dissipative Stormer problem – trajectories and radiation patterns* In preparation

friction

Brownian Motion in the Classical Stormer Problem

Escape appearing in otherwise closed orbits (chaotic ICs)

Figure 20. Brownian Motion in the Störmer Problem: trajectories for $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0$, $V_{y0} = 0.1$, $V_{z0} = 0.1$, with upper row: $\sigma_S = 10^{-7}$, middle row $\sigma_S = 10^{-6}$ and lower row $\sigma_S = 10^{-5}$; for all rows, from left to right $\Gamma \in \{10^{-4}, 10^{-3}, 10^{-2}\}$

Brownian Motion in the Classical Stormer Problem

Figure 44. Brownian Motion in the Störmer Problem: energy (left) and distance (right) for a sample trajectory with $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, $V_{x0} = 0.01$, $V_{y0} = 0.1$, $V_{z0} = 0.1$, h = 0.001, L = 150000, $\sigma_S = 10^{-3}$, $\Gamma = 10^{-3}$

Escape rate = percent of escape trajectories out of 10⁴ identically set trajectories

Escape trajectory = trajectory for which the last 10^3 steps are well fitted (R² > 0.9) by a straight line

Brownian Motion in the Classical Stormer Problem – Escape rate

Brownian Motion in the Störmer Problem: escape rate as a function of noise magnitude for an ensemble of trajectories for h = 0.001, L = 150000, $\Gamma = 10^{-3}$, $X_0 = 0.7$, $Y_0 = 0.8$, $Z_0 = 0$, with $V_{x0} = 0.01$, $V_{y0} = 0.1$, $V_{z0} = 0.1$ green, $V_{x0} = 0.1$, $V_{y0} = 0$, $V_{z0} = 0$ red, and $V_{x0} = 0.1$, $V_{y0} = 0.1$, $V_{z0} = 0.1$ blue. Each ensemble has N_{traj} realizations and σ_S is the only parameter which varies between ensembles. The fitting function has the equation $-1.40 \times 10^8 \sigma_S^2 + 2.34 \times 10^5 \sigma_S + 3.09$ for the green fit, $-1.75 \times 10^8 \sigma_S^2 + 2.77 \times 10^5 \sigma_S - 6.2$ for the red fit and $-1.19 \times 10^8 \sigma_S^2 + 2.08 \times 10^5 \sigma_S + 9.07$ for the blue fit.

Thank you!

