

melir	ne	r	le	ar	Clos	sest Approach
PR 00BBI	169254	20-85 11	7 0.00			Pluto global pan maps at 0.9 km/pix
CELOBRIA	173254	30383 24	1.4 8.88	-0		Charon global pan maps at 0.9 km/pix
P_LEISA_Alice_1a	144203	251.7 20	0.5 0.00	I I P	LEISA_Alice_1a	Pluto global IR at 9 km/pix
P_LEISA_Alice_1b	133933	233.8 2	0.00 0.00		LEISA_Alice_1b	Nix global color maps at 2 km/pix
CG LEISA LOBRI 1	136113	23768 2	7.2 9.00	CLI	N_COLOR_BEST EISA_LORRI_1	Charon global IR at 9 km/pix (+ pan at 0.6 km/pix)
P_LEISA_Alice_2a	108745	189.8 2	2.2 0.01	P	LEISA Alice 2a	Nix IR at 4 km/nix & nan at 0.3 km/nix
P_LEISA_Alice_2b	97055	169.4 23	3.1 0.01		LEISA_Alice_2b	Pluto pan images at 0.4 km/pix
N_LEISA_LORRI_BEST	58072	0.29 10	0.5 0.29		N_LEISA_LORRI_BEST	Charon IR at 5 km/pix (+ pan at 0.4 km/pix)
P_LORRI_STEREO_MOSAIC	74883	0.37 2	5.4 0.69	P_L(ORRI_STEREO_MOSAIC	Charon global color at 1.4 km/pix
C_LEISA_HIRES	78411	133,4 3	7 <u>-2</u> 8.98	C_	LEISA_HIRES	Pluto IR at 3 km/pix
P LEISA HIRES P_LEISA HIRES	44036 44036	76.9 3 0.22 3	2.7 0.00 2.7 0.35		P_LEISA_HIRES	Nix pan at 0.5 km/pix
P_COLOR_2	31826	55.5 3	9.6 0.00	P_0	OLOR_2	Pluto global pan at 0.5 km/pix, strip at 0.12 km/pix
P MPAN 1 AUCE AIBGLOW HELD 1	20844	351 4	3.8 1.86	AL A	MPAN_CA MPAN_1	Pluto pan at 0.3 km/pix, strip at 0.08 km/pix
PPAAQEEAAAAGEWWPHEED12	14510	0.07 7	.8 0.00			Charon global pan at 0.6 km/pix, strip at 0.16 km/pix Pluto (smeared) at 110 deg phase
P_ALICE_AIRGLOW_DUMP_2	30547	0.15 8	0.00 _		PREXTHERMSCAN	Pluto radiometry at 230 km/pix
P_HIPHASE_HIRES	18735	0.09 15	1.7 0.92	P_H	IPHASE_HIRES	Pluto at 0.34 km/pix, 146 deg phase
					CODE BALLANCE 2	Pluto in reflected Charonlight, 0.44 km/pix
P_OCC	54517	179	9.1 0.60	Pş	0660	Pluto solar and earth occultation
				P_0	CC	Plasma roll
P_OCC	54517	17	9.1 0.63	P_0	00000	Charon solar and earth occultation
						• Imeline addresses all group 1 (required) and 2
				X2	PEASMAROL 3 PEASMINRECL 33	(desired) goals, and all but one group 3
			1	8	/	•All group 1, and most of group 2 and 3 are addressed
					/	redundantly
C_0CC	118670	17	9.4 0.86	C_0	000	•P-7 days to P+2 days has already been sequenced
						and reviewed by the science team, with the final
H DED COONECT	100010	0.00 10	1 0.97			delivery due in November.

Our Challenge: • How do we know what asteroids are?

	Bus-DeMeo Taxonomy
Wavelength (0.45-2.45 μm)	S-complex
	$s \swarrow sa \swarrow sq \checkmark sq \checkmark sr \checkmark sv \checkmark$
	C-complex
	B C Cb Cg Cgh
	X-complex
	End Members
	$A \not \sim \circ \sim \circ \sim \circ \sim \circ \sim \circ \sim \circ \circ \sim \circ \circ \circ \circ \circ$
	DeMeo, Binzel, Slivan, Bus (2009)

Nightingale Site

- Within the 20-m-diameter Hokioi crater
 - Spectrally redder in VISNIR than the average surface •
 - Among the youngest impact features

 - Mid-latitude (56°,43°) location Limited peak T ~360 K (versus ~390 K at equator)
- Selected based on
 - Navigation and safety considerations
 - Expected higher abundance of particles <2 cm in diameter
 - Spectroscopic observations
 - hydrated phyllosilicates •
 - iron oxide magnetite organic molecules

 - carbonates

October 20, 20,

Sample Stowed

- Size range from sub-micron to 3 cm
- Expected Mineralogy and Chemistry: Hydrated phyllosilicates Carbonates

 - Magnetite
 - Sulfides (not spectrally active but inferred from analog meteorites) Organic compounds
- •
- The sample will contain multiple lithologies
 Similar to type-1 Cl and CM chondrites
 Non-chondritic and igneous in nature, like HED
 - meteorites Some with properties distinct from known meteorites
 - Monomineralic cm-scale carbonates
 - Ejected cm-scale platy particles

Lauretta et al. 2022 - Science

