Low-Latency Pipelines for LISA Mission A Deep Learning Approach

¹Ana Caramete, ¹Daniel Tonoiu, ¹Laurentiu - Ioan Caramete, ^{1,2}Florentina - Crenguta Pîslan

¹ Institute of Space Science, Romania ² Faculty of Physics, University of Bucharest, Romania

> Scientific Seminar of the Astronomical Institute, Bucharest, March 15th 2023

ISS LISA Science Group (ISS-Sci)

- Data analysis using NNs implemented on different hardware platforms
- Estimating the merging rate of BHs
- Waveform generation
- Building of GW source catalogues
- Multi messenger analysis of astrophysical sources
- Deep learning based low-latency alert pipeline for the detection and characterisation of GW from LISA data

ISS-Science Group (ISS-Sci)

- Data analysis using NNs implemented on different hardware platforms
- > Estimating the merging rate of BHs
- Waveform generation
- Building of GW source catalogues
- Multi messenger analysis of astrophysical sources
- Deep learning based low-latency alert pipeline for the detection and characterisation of GW from LISA data

17 August 2017, 12:41:04 UTC

GW170817

17 August 2017, 12:41:04 UTC

17 August 2017, 12:41:04 UTC

GW170817

+ 1.7 sec

GRB170817A

+ 2 sec

Credits: Abbott, B. P., et al. "Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A." 2017, ApJL, <u>848, L13</u>.

+ 10.9 h

SSS 17a/AT 2017 GFO

*CREDITS: D.A. COULTER ET AL., "*Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source*", SCIENCE*, 2017, vol 358, Issue 6370, pp. 1556-1558

Figure 4 $3' \times 3'$ images centered on NGC 4993 with North up and East left. *Panel A: Hubble Space Telescope* F606W-band (broad V) image from 4 months before the GW trigger (25, 35). *Panel B:* Swope image of SSS17a. The *i*-band image was obtained on 2017 August 17 at 23:33 UT by the Swope telescope at Las Campanas Observatory. SSS17a is marked with the red arrow. No object is present in the *Hubble* image at the position of SSS17a (25, 35).

FIG. 1: Timeline of the discovery of GW170817, GRB 170817A, and SSS17a/AT 2017gfo; as well as the subsequent follow-up observations relative to the merger time t_c. The the rows are separated by the observation band (gravitational and electromagnetic), and the names of the relevant instruments and observing teams are given in each row. The shaded dashes represent times when the information was reported in a GCN circular. Representative observations in each band are shown with solid circles, with the size approximately scaled with their brightness. Solid lines indicate when the source was detectable by at least one telescope. Samplings of the measured signal are given by the subplots with lines highlighting their placement on the timeline.

> INSTITUTE OF SPACE SCIENCE www.spacescience.ro

Credits: Justin Conor Flaherty, " Multimessenger Observations of Neutron Star Merger GW170817" Thesis · August 2020 DOI: 10.13140/RG.2.2.21742.02882

DETECTORS

LISA Mission

 The LISA (Laser Interferometer Space Antenna) mission will be one of the first space-based gravitational wave observatories.

- The observatory will consist of three satellites connected by laser signals and will be capable of in-depth studies related to various physics phenomena (from black hole formation to the expansion rate of the Universe).
- Most importantly, LISA, with the help of gravitational waves, will "listen" to different evolution stages of the Universe.

A Deep Learning Toolkit for Gravitational Waves Analysis (GWEEP)

Develop and test different types of neural network models, configurations and pre-processing approaches.

OUR APPROACH (so far):

Multilayer Perceptron (MLP)

Convolutional (CNN)

Multilayer Perceptron (MLP)

Input Layer

Dense Hidden Layer #1

Dense Hidden Layer #2

Dense Hidden Layer #3

Dense Hidden Layer #4

Dense Hidden Layer #5

Dense Layer #6

Dense Output Layer

Input Layer

Convolutional Hidden Layer #1

Convolutional Hidden Layer #2

Convolutional Hidden Layer #3

Convolutional Hidden Layer #4

Flatten Layer #5

3 x Dense Hidden Layer #5

Dense Output Layer

OUR APPROACH (so far):

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set

OUR APPROACH (so far):

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- Test the models with the simplified data set.

out of which:

800.000 (40%): **train**

1.160.959 (60%): inference

 $5 ext{ x Classes of}$ adjecent mass ratios: A (q = 1 - 300) B (q = 301 - 749) C (q = 750 - 1200) D (q = 1201 - 1501) N (Noise)

Min-Max Feature Standardization:

Multilayer Perceptron (MLP)

MLP Classifier // Accuracy

1.00

0.95

Epochs

OUR APPROACH (so far):

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- Test the models with the simplified data set.
- Perform a benchmarking on different platforms (assuming the same configuration).

	Multilayer Perceptron (MLP)	Convolutional (CNN)	
Nvidia RTX 3050 Ti	Nvidia Tesla T4	Apple M1 Neural Engine	AMD EPYC 7551P
Technology = 8 nm	Technology = 12 nm	Technology = 5 nm	Technology = 14 nm
RT Cores = 20	RT Cores = 40	CPU Cores = 8	Cores = 32
Tensor Cores = 80	Tensor Cores = 320	GPU Cores = 8	Threads = 64
Core Clock = 1035 MHz	Core Clock = 1590 MHz	GPU Clock = 1278 MHz	Core Clock = 2000 MHz
VRAM = GDDR6	$\mathbf{VRAM} = \mathbf{GDDR6}$	CPU Clock = 3200 MHz	Boost Clock = 3000 MHz
VRAM size = 4 Gb	VRAM Size = 16 Gb	Neural Engine = 16 Cores	$\mathbf{R}\mathbf{A}\mathbf{M} = \mathbf{D}\mathbf{D}\mathbf{R}4$
Bandwidth = 192 Gb/s	Bandwidth = 320 Gb/s	Unified Memory = 16 Gb	$\mathbf{D}\mathbf{A}\mathbf{M}\mathbf{Sizo} = 128 \mathbf{C}\mathbf{b}$
Mem. Clock = 1500 MHz	Mem. Clock = 1250 Mhz	Memory = LPDDR4X	$\mathbf{RAWI} \mathbf{SiZe} = 128 \mathbf{GD}$
FP32 = 5.299 TFLOPS	FP32 = 8.141 TFLOPS	FP32 = 2.6 TFLOPS	RAM Clock = 2666 Mhz

		N P	Iultilayer erceptron (MLP)	Convolu (CN	tional N)		Credits: V	.A. Bâsceanu
Models	Platform	Memory	Cores	FP32	Lib	Training Time	Inference Time	Inference Accuracy
DL-LL CNN	Nvidia RTX 3050 Ti	GDDR6/ 4Gb	RT 20/ Tensor 80	5.299 TFLOPS	Keras/ Tensorflow	87 min 10.15 sec	2 min 45.92 sec	96.16 %
DL-LL CNN	Nvidia Tesla T4	GDDR6/ 16Gb	RT 40/ Tensor 320	8.141 TFLOPS	Keras/ Tensorflow	*379 min 15 sec	1 min 29.4 sec	96.40 %
DL-LL CNN	Apple M1 Neural Engine	LPDDR4X/ 16Gb	Neural Engine 16 Cores	2.6 TFLOPS	Keras/ Tensorflow	1099 min 10.20 sec	2 min 55.15 sec	95.27 %
DL-LL CNN	AMD EPYC 7551P	DDR4/ 128Gb	32 Cores/ 64 Threads		Keras/ Tensorflow	680 min 20.40 sec	1 min 51.2 sec	95.61 %
DL-LL MLP	Nvidia RTX 3050 Ti	GDDR6/ 4Gb	RT 20/ Tensor 80	5.299 TFLOPS	Keras/ Tensorflow	57 min 29.51 sec	2 min 25.77 sec	83.76%
DL-LL MLP	Nvidia Tesla T4	GDDR6/ 16Gb	RT 40/ Tensor 320	8.141 TFLOPS	Keras/ Tensorflow	*369 min 45.03 sec	42.03 sec	84.27 %
DL-LL MLP	Apple M1 Neural Engine	LPDDR4X/ 16Gb	Neural Engine 16 Cores	2.6 TFLOPS	Keras/ Tensorflow	239 min 49.85 sec	1 min 31.34 sec	84.61 %
DL-LL MLP	AMD EPYC 7551P	DDR4/ 128Gb	32 Cores/ 64 Threads		Keras/ Tensorflow	381 min 21.59 sec	2 min 34.22 sec	82.54 %

OUR APPROACH (so far):

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- Test the models with the simplified data set.
- Perform a benchmarking on different platforms (assuming the same configuration).

> Test on (much) more realistic data

SANGRIA DATA CHALLENGE

SANGRIA TRAIN DATA

Input feature DF split into train (68%) and test datasets (32%)

Loss function: Binary Crossentropy

Optimizer: ADAM

<u>Architectures</u>: ANN, LSTM, BiLSTM, GRU, SimpleRNN

	Recu (R)		
MODEL	py10_t13_ep63	py10_t26_ep03	py10_t37_ep05
Hidden Cells	10	30	10
No. of feature dimensions	10	10	10
Learning rate	10 ⁻⁴	10 ⁻⁵	10 ⁻⁴
Layers 1xLSTM + 1xDense		2xBiLSTM + GlobalMaxPo oling1D + 1xDense	1xLSTM + 1xDense

MODEL	gweep_rnn_01	gweep_rnn_02	gweep_ann_01	gweep_ann_02
Hidden Cells	1024	1024	128	1024
No. of feature dimensions	10	10	10	10
Learning rate	10 ⁻⁷	10 ⁻⁵	10 ⁻⁵	10 ⁻⁷
Layers	1x LSTM	2xBiLSTM, GlobalMaxPoolin g1D	2x Dense, Dropout(0.2)	3x Dense

ISS

www.spacescience.ro

Results:

✓ All peaks are detected if the threshold is above 0.5 (50%)

- ✓ We proved that the development of a low latency pipeline which can detect MBHB events is feasible
- ✓ Prediction time on Sangria blind: seconds
- ✓ Training time: 12-24h depending on model architecture and hardware (PC) resources

OUR APPROACH (so far):

- Develop and test different types of neural network models, configurations and pre-processing approaches.
 - Generate simplified data set.
- Test the models with the simplified data set.
- Perform a benchmarking on different platforms (assuming the same configuration).
- > Test on (much) more realistic data
- Parameter estimation (correctly identifying the rest of the GW source parameters)

Thank you!

