COMPUTING THE IONOSPHERIC TOTAL ELECTRON CONTENT

FROM DATA TO PRODUCTS

FLORIN CONSTANTIN MIHNEA POPESCU GABRIEL CHIRITOI

The lonosphere

The ionosphere is composed of charged particles resulted from the ionization caused by solar radiation.

Between 50 and 800 km in altitude.

It reflects and modifies radio waves used for communication and navigation.

The lonosphere

© 2012 Encyclopædia Britannica, Inc.

The lonosphere

The Satellites

There are 4 GNSS networks active with a total of over 80 satellites.

Each satellites provides observational and navigational data over two channels of different frequencies.

Each satellite ultimately represents a point on the TEC map.

The Total Electron Content

The Total Electron Content is calculated based on the delay difference between two signals. $\Delta^{iono} = \pm \frac{40.308}{f^2} * \int_{\overrightarrow{r_T}}^{\overrightarrow{r_R}} N_e dl$

o40.308 represents the refractive index of the ionosphere

of represents a combination term of the two frequency values

othe integral represents the total number of electrons along the ray path

The Observable Data

TEC can be calculated using either the pseudorange or the phase.

The pseudo-range (PR) is the distance from the receiver antenna to the satellite antenna including receiver and satellite clock offsets (and other biases, such as atmospheric delays).

The phase is the carrier-phase measured in whole cycles.

The Observable Data

3.02 OBSERVATION DATA M: MIXED Spider V6.2.0.6944 NIEP 20190321 130926 UTC SNR is mapped to RINEX snr flag value [1-9] LX: < 12dBHz -> 1; 12-17dBHz -> 2; 18-23dBHz -> 3 24-29dBHz -> 4; 30-35dBHz -> 5; 36-41dBHz -> 6 42-47dBHz -> 7; 48-53dBHz -> 8; >= 54dBHz -> 9			RINEX V PGM / R COMMENT COMMENT COMMENT COMMENT	ERSION / TYPE UN BY / DATE			
BAES			MARKER NAME				
BAES			MARKER 1	NUMBER			
Eduard Nastase	National Institute	for Earth Physics	OBSERVE	R / AGENCY			
496841	LEICA GRX1200+GNSS	8.71/6.110	REC # /	TYPE / VERS			
4217705 7411 18	LEIARIU NO 19145-1852-4410495	1603	ANT # /	TIPE DOSTUTION XXZ			
0.0000	0.0000 0.	0000	ANTENNA	: DELTA H/E/N			
G 16 C1C L1C D1C	S1C C2S L2S D2S S2S	C2W L2W D2W S2W C5Q	SYS / #	/ OBS TYPES			
L5Q D5Q S5Q			SYS / #	/ OBS TYPES			
R 12 C1C L1C D1C	S1C C2P L2P D2P S2P	C2C L2C D2C S2C	SYS / #	/ OBS TYPES			
DBHZ			SIGNAL	STRENGTH UNIT			
1.000	10 00 0.00		INTERVA	L			
2019 03 21	12 00 0.00	000000 GPS	TIME OF	FIRST OBS			
2019 03 21	12 59 59.00	GPS	RCV CLO	CK OFFS ADDI.			
G L2S -0.25000			SYS / P	HASE SHIFT			
G L2X -0.25000			SYS / P	HASE SHIFT			
R L2P 0.25000			SYS / P	HASE SHIFT			
E L8Q -0.25000			SYS / P	HASE SHIFT			
9 R04 6 R05 1 I	R06 -4 R13 -2 R14 -7	R15 0 R17 4 R23 3	GLONASS	SLOT / FRQ #			
R24 2			GLONASS	SLOT / FRQ #			
C1C -71.940 C1P	-71.940 C2C -71.94	0 C2P -71.940	GLONASS	COD/PHS/BIS			
18 18 1929	7		LEAP SE	CONDS			
> 2019 03 21 12 00	0 0000000 0 17		END OF I	HEADER			
G06 24466000.080	128569714.61607	2897.855	43.250	24465998.560	100184186.29907	2258.071	45.500
G10 25100611.780	131904603.05106	-1150.835	40.800				
G12 21671910.140	113886786.39308	2378.945	50.000	21671903.060	88742782.92707	1853.726	45.900
G13 23405892.560	122998782.93307	-3729.058	44.000				
G15 22275944.260	117060892.70308	-2783.388	49.200	22275938.100	91216264.68707	-2168.874	45.850
G17 22292066.000	117145637.37008	-1968.778	50.100	22292058.100	91282310.48907	-1534.112	46.100
G19 20812962.720	109372884.17908	-168.818	49.000			0.05 0.05	40.000
G24 20419128.140	10/3032/5./0/08	1033.576	51.300	20419123.540	83612935.39708	805.385	49.900
P04 21881151 940	117172596 27407	-2023.923	42.600	21881149 660	91134220 72807	-2482 104	43 750
R04 21001101.040	116387287.56207	80.237	46.250	21772645.780	90523452.15007	62.406	45.650
R13 21329655.460	113899179.33807	-2326.146	42.750	21329654.520	88588274.37706	-1809.226	39.750
R14 19668929.840	104846487.65308	434.337	49.800	19668929.760	81547284.57607	337.818	46.900
R15 22101985.480	118106323.92807	2804.055	46.200	22101985.300	91860483.67407	2180.934	43.700
R17 23634979.380	126475552.15606	4581.570	38.150	23634995.580	98369934.10105	3563.449	35.150
R23 20634144.180	110378831.13807	-641.818	47.850	20634144.880	85850185.75806	-499.192	41.250
R24 20850498.520	111497017.77007	3027.328	43.450	20850495.440	86719886.66905	2354.591	34.150

The TEC value obtained so far is related to the signal path (slant TEC) and still has many biases. In order to remove them we must calculate the vertical TEC.

 $I(t) = S(\varepsilon(t)) * V(t) + B$

$$S(\varepsilon) = \frac{1}{\cos[\sin^{-1}\left[\frac{R}{R+h}\cos(\varepsilon)\right]]}$$

The Position of the Satellites

The exact position of the satellites must be calculated in order to have the satellite's elevation relative to the receptor and the piercing point of the signal.

The position is calculated using the following equation describing an Keplerian orbit, all the arguments for it being transmitted in the navigational data of the satellites.

 $\boldsymbol{r}(t) = \boldsymbol{r}(t, a, ec, i, \Omega, \omega, \tau)$

The Position of the Satellites

- ω argument of perigee
- Ω arg. ascending node (Aries)
- λ arg. ascending node (Greenwich)
- V true anomaly
- Y vernal equinox
- G Greenwich meridian

The Navigational Data

1		3.02	N: GNSS	NAV DATA	G: GPS	RINEX VERSION / TYPE
2	Spic	der V7.4.0.8	125 NIEP		20190929 105505	UTC PGM / RUN BY / DATE
3	GPSF	A 8.3819D-	09 1.4901D-0	8 -5.9605D-0)8 -5.9605D-08	IONOSPHERIC CORR
4	GPSE	8.3968D+	04 1.6384D+0	4 -1.3107D+0)5 -6.5536D+04	IONOSPHERIC CORR
5	GPUI	3.7252902	985D-09 7.105	427358D-15	61440 2073	TIME SYSTEM CORR
6		18 18 1	929 7			LEAP SECONDS
7						END OF HEADER
8	G01	2019 09 26	15 59 44-1.41	8734900653D-	-04-1.29602995002	26D-11 0.000000000000D+00
9		1.8000000	0000D+01 1.59	687500000D+	01 4.6544794685	13D-09-2.863159206485D+00
10		7.04079866	4093D-07 9.11	6305620410D-	-03 1.5087425708	77D-06 5.153643062592D+03
11		4.03184000	0000D+05 4.84	2877388000D-	-08 1.1730750502	56D+00-2.402812242508D-07
12		9.76805340	8461D-01 3.59	125000000D+	02 7.64862557652	28D-01-8.342490254165D-09
13		1.69292760	3658D-10 1.00	000000000D+	+00 2.0720000000	00D+03 0.00000000000D+00
14		2.0000000	0000D+00 0.00	0000000000D+	00 5.58793544769	93D-09 1.800000000000D+01
15		3.95910000	0000D+05			
16	G02	2019 09 27	04 00 00-3.13	6969171464D-	-04-8.07176547823	35D-12 0.000000000000D+00
17		1.0100000	0000D+02 5.95	3125000000D+	01 4.9680641822	65D-09-2.568085076469D+00
18		3.14973294	7350D-06 1.91	7091070209D-	-02 1.28895044320	68D-06 5.153537820816D+03
19		4.46400000	0000D+05 1.91	8524503708D-	-07 1.10142661264	45D+00-4.842877388000D-08
20		9.55942534	4551D-01 3.52	875000000D+	02-1.71201328214	45D+00-8.339990031914D-09
21		3.23942067	6149D-10 1.00	0000000000D+	+00 2.0720000000	00D+03 0.00000000000D+00
22		2.0000000	0000D+00 0.00	000000000DH	00-2.0489096641	54D-08 1.01000000000D+02
23		4.39140000	0000D+05			
24	G03	2019 09 26	18 00 00-1.52	7043059468D-	-05-4.32009983342	21D-12 0.00000000000D+00
25		8.6000000	0000D+01-1.22	3125000000D+	02 4.48340120584	46D-09-2.933479087727D+00
26		-6.40749931	3354D-06 2.55	5537386797D-	-03 8.57748091220	09D-06 5.153710905075D+03
27		4.10400000	0000D+05-3.53	9025783 <mark>5</mark> 39D-	-08 2.21533566013	14D+00-1.154839992523D-07
28		9.63736656	2315D-01 2.14	3750000000D+	02 7.5136664975	69D-01-8.124981576429D-09
29		-3.67515295	9737D-10 1.00	000000000D+	+00 2.0720000000	00D+03 0.00000000000D+00
30		2.0000000	0000D+00 0.00	000000000DH	00 1.8626451492	31D-09 8.600000000000D+01
31		1 03110000	00000±05			

Compute the time t_k from the ephemerides reference epoch t_{oe} (t and t_{oe} are expressed in seconds in the GPS week):

$$t_k = t - t_{oe}$$

Compute the mean anomaly for t_k :

$$M_k = M_0 + (\frac{\sqrt{\mu}}{\sqrt{a^3}} + \Delta n)$$

Solve (iteratively) the Kepler equation for the eccentric anomaly E_k :

 $M_k = E_k - ec * \sin E_k$

Compute the true anomaly vk:

$$v_k = \tan^{-1}(\frac{\sqrt{1 - ec^2} * \sin E_k}{\cos E_k - ec})$$

Compute the argument of latitude u_k from the argument of perigee ω , true anomaly v_k and corrections c_{uc} and c_{us} :

$$u_k = \omega + v_k + c_{uc} \cos 2(\omega + v_k) + c_{us} \sin 2(\omega + v_k)$$

Compute the radial distance r_k , considering corrections c_{rc} and c_{rs} :

$$r_k = a(1 - ec * \cos E_k) + c_{rc} \cos 2(\omega + \nu_k) + c_{rs} \sin 2(\omega + \nu_k)$$

Compute the inclination i_k of the orbital plane from the inclination i_o at reference time t_{oe} , and corrections c_{ic} and c_{is} :

 $i_k = i_0 + it_k + c_{ic} \cos 2(\omega + v_k) + c_{is} \sin 2(\omega + v_k)$

Compute the longitude of the ascending node λ_k :

 $\lambda_k = \Omega_0 + (\dot{\Omega} - \omega_E)t_k - \omega_E t_{oe}$

Compute the coordinates in the TRS frame, applying three rotations (around u_k , i_k and λ_k):

$$\begin{pmatrix} X_k \\ Y_k \\ Z_k \end{pmatrix} = R_3(-\lambda_k) * R_1(-i_k) * R_3(-u_k) * \begin{pmatrix} r_k \\ 0 \\ 0 \end{pmatrix}$$
$$R_1(x) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos x & \sin x \\ 0 & -\sin x & \cos x \end{pmatrix}$$

$$R_{3}(x) = \begin{pmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Removing the biases

 $I(t) = S(\varepsilon(t)) * V(t) + B$

Out of all the biases, the most significant one, because of how hard it is to characterize, is the Differential Code Bias (DCB).

The DCB is caused by the electronics of the satellite and the receiver and is considered constant over the course of up to a few days.

Removing the biases

For a numerical solution, we need another starting presumption about the biases or the slant TEC in order to be able to calculate them:

• The sum of all biases in a GNSS network is zero;

• The average TEC value of a set area covered by a single receiver recorded by any satellite is constant over a set time interval (Otsuka method);

The Otsuka Method

It was used for a higher spatial resolution TEC map over Japan.

It is based on partially deriving the following estimator:

$$E = \sum_{i}^{N_s} \sum_{k}^{N_t} W_k^i [\overline{I_k / S(\varepsilon_k^i)} - (\overline{V_k} + \overline{1 / S(\varepsilon_k^i)} B^i)]^2$$
$$W_k^i = \overline{1 / S(\varepsilon_k^i)}$$

The Otsuka Method $W_1^1 T_1^1 + W_1^2 T_1^2 - V_1 (W_1^1 + W_1^2) - (W_1^{1^2} B^1 + W_1^{2^2} B^2) = 0$ $W_2^1 T_2^1 + W_2^2 T_2^2 - V_2 \left(W_2^1 + W_2^2 \right) - \left(W_2^{1^2} B^1 + W_2^{2^2} B^2 \right) = 0$ $W_1^{1^2}T_1^1 + W_2^{1^2}T_2^1 - V_1W_1^{1^2} - V_2W_2^{1^2} - B^1(W_1^{1^3} + W_2^{1^3}) = 0$ $W_1^{2^2}T_1^2 + W_2^{2^2}T_2^2 - V_1W_1^{2^2} - V_2W_2^{2^2} - B^2(W_1^{2^3} + W_2^{2^3}) = 0$

Generating TEC Maps

For regional maps, a sufficiently spread set of receivers should provide enough points to plot a map.

For local maps, the higher the spatial resolution, the more permissive the interpolation/ fit method must be.

ESA provides TEC maps with a spatial resolution of 1° x 1° longitude and latitude.

Radial Basis Function Interpolation

One very permissive interpolation method is radial basis function interpolation.

x		Y
	Z	

Radial Basis Function Interpolation

$$y(x) = \sum_{i=0}^{N-1} w_i \phi(|x - x_i|)$$

$$\phi(r) = (r^2 + r_0^2)^{\alpha}$$

The values chosen for r_0 and α have been 0, 0.375 respectively.

19:00 - 21:00:

The TEC maps below cover the entire surface of Romania and it was calculated for 27.09.2020, in the time interval

Thank you for your attention!