On inverting solar coronal vector magnetic fields from infrared observations

Trials and Tribulations

Alin R. Paraschiv

High Altitude Observatory, NCAR | UCAR

AIRA Seminar, April 2023

< □ ▶ < / □ ▶

- - E

JAC.

Sun's Corona extending into interplanetary space. The low density, luminosity, and yet unexplained temperature complicate the observational interpretation.

(日)

nac

Why measure magnetic fields?

• What are the root causes of coronal heating, dynamics and flaring?

Need to measure non potential and in general **non**-force-free magnetic energy $(\mathbf{j} \times \mathbf{B})$.

Requires measurements of B(r, t) on short lengths and timescales. \rightarrow High resolution instrument like DKIST

• What is the root cause of the magnetic solar cycle?

Need to measure the magnetic helicity over solar cycle scales ($\int ABdV$).

Requires measurements of B(r, t) on longer lengths and timescales. \rightarrow Synoptic instrument like CoMP/uCoMP or COSMO

Sar

Why measure magnetic fields?

More precisely:

- Nature of waves and their propagation in the corona.
- Turbulence and SW acceleration in the lower corona.
- Diagnostic of off-limb magnetic structures.
- Pre and post-eruptive CME structures.
- Theoretical studies on coronal polarization.
- Many others...

Adapted from: Tomczyk et. al, 2008, SolPhys

Definitions:

- Conventions for directions are:
 - X Along the line of sight. (Integrated in most 2D projections)
 - Y Horizontal; E-W direction.
 - Z Vertical: N-S direction

Definitions:

- Atomic alignment due to anisotropic radiation fields.
- Corona is reasonably approximated when probing the Zeeman (weak field) & Hanle (saturated regime) effects.

$$\begin{split} & \boxed{I_1} = I_{01} + \sqrt{\frac{9}{8}} \boxed{I_{01}} \sigma_{01}^2 (\cos^2 \theta_B - \frac{1}{3}) & \text{Measurement} \\ & \boxed{Q_1} = -\sqrt{\frac{9}{8}} I_{01} \sigma_{01}^2 \sin^2 \theta_B \cos(2\Phi_B) & \text{Unknown} \\ & \boxed{U_1} = -\sqrt{\frac{9}{8}} I_{01} \sigma_{01}^2 \sin^2 \theta_B \sin(2\Phi_B) \\ & \boxed{V_1} = -\sqrt{\frac{9}{8}} I_{01} \omega_B \cos \theta_B (\sqrt{2} + \sigma_{01}^2) \\ & \boxed{V_1} = -\sqrt{\frac{9}{8}} I_{01} \omega_B \cos \theta_B (\sqrt{2} + \sigma_{01}^2) \end{split}$$

$$V/I \approx k B \cos(\Theta_B) \frac{dI}{d\lambda}$$
 (Zeeman)
 $\Phi_B \approx \frac{1}{2} \arctan \frac{U}{Q}$ (Hanle)

 \rightarrow DEGENERACIES!!!

nac

Conceptual Basis and Motivation

Source

K-corona

 $S_i = E_i + K_i + F_i$ (optically thin)

 $K_{\rho}, F_{4} = 0; K_{i}, F_{i} << E_{j}$

Emission

Where: E ~ 10 E ~ 1000 E,

Stokes ve

- Target strong infrared lines formed in coronal regime
 - + Better seeing
 - + Lower scattering
 - + Telescope optics
 - + Dark sky
 - + Zeeman sensitivity $\sim \lambda$
 - 0- Many transitions in theory only
 - 0- Detectors (\$\$\$)
 - Thermal emission from many sources
 - Atmospheric extinction
 - Cryogenic

Spectroscopy and Counts

Ground Infrared spectroscopy at 1000-4000 nm

- Ions: Fe XIII 1074.7nm, 1079.8nm, Si X 1430.1nm, Si IX 3934.3nm.
- Emission might not be well fitted by parametric fitting. $10000 \ I \sim 10-1000 \ QU \sim 1-10 \ V$
- Stokes V is hard to recover.

JAC.

Identifying suitable atomic and molecular absorption spectra

A. R. Paraschiv

< □ > < 同 > < 三 > <

ъ

Jac.

- Absorption lines will influence the integration of coronal emission lines.
- Higher outflow regions might require manual calibrations.
- The Si X wavelength region is particularly problematic.

< D >

A (A) > (A) > (A)

Jac.

Cor. Line & Wave.	ID	Cal. Line	Source	Wave.	CDF Wave. Range	Rel. I	Comment
Fe XIII 1074.68nm	O3	Si I	ASD	1072.74nm	1072.58nm - 1072.92nm	0.44	Very strong line; too close to slit wavelength margin
	С	CI	ASD	1072.95nm	1072.84nm - 1073.12nm	0.60	Strong absorption line
	O2	H_2O	HITRAN	1074.15nm	1073.96nm - 1074.32nm	0.91	Very weak line.
	А	H_2O	HITRAN	1074.35nm	1074.24nm - 1074.44nm	0.68	Strong absorption. Blend of two water lines.
	$\mathbf{X1}$	Fe I	ASD	1074.46nm	1074.40nm - 1074.52nm	0.82	Weak line, unusable due to blend with cor. Fe XIII line
	X2	Si I	ASD	1074.94nm	1074.80nm - 1075.10nm	0.38	Strong line, unusable due to blend with cor. Fe XIII line
	в	Fe I	ASD	1075.30nm	1075.20nm - 1075.37nm	0.75	Not very prominent but might be usable
	01	CI	ASD	1075.40nm	1075.31nm - 1075.46nm	0.85	Weak line; possible blend issue
Fe XIII 1079.79nm	Α	Fe II	ASD	1078.30nm	1078.20nm - 1078.40nm	0.69	Strong absorption line
	в	Si I	ASD	1078.45nm	1078.32nm - 1078.58nm	0.63	Strong absorption line
	С	Si I	ASD	1078.68nm	1078.48nm - 1078.96nm	0.39	Very strong line
	X1	H_2O	HITRAN	1079.60nm	1079.56nm - 1079.70nm	0.89	Weak line. Very weak HITRAN S.
	-	-	-			-	Unusable due to blend with cor. Fe XIII line
	X2	H_2O	HITRAN	1079.95nm	1080.32nm - 1080.40nm	0.41	Strong line. Blend of two water lines.
	-					-	Unusable due to blend with cor. Fe XIII line
	01	H_2O	HITRAN	1080.37nm	1080.16nm - 1080.56nm	0.88	Weak line; Strong HITRAN S.
	O2	Ne I	ASD	1080.63nm	1080.56nm - 1080.72nm	0.91	Very weak line
	D2	H_2O	HITRAN	1081.08nm	1080.72nm - 1081.52nm	0.56	Strong absorption 2-line set.
	D1	Mg I	ASD	1081.11nm	1080.72nm - 1081.52nm	0.43	Strong absorption 2-line set; treat as pair
	O3	Fe I	ASD	1081.83nm	1081.64nm - 1082.04nm	0.77	Moderately strong line; close to slit wavelength margin.
Si X 1430.10nm	Α	Fe I	ASD	1427.50nm	1427.48nm - 1427.62nm	0.21	Separable line in tough range; needs specialized fitting procedure.
	B1	H_2O	HITRAN	1429.01nm	1428.83nm - 1429.14nm	0.47	Pair of close lines, fit together.
	B2	H_2O	HITRAN	1429.04nm	1428.83nm - 1429.14nm	0.57	
	$\mathbf{X1}$	Fe I	ASD	1430.30nm	1430.29nm - 1430.34nm	-	Not usable due to overlap
Si IX 3934.34nm	C1	CH_4	HITRAN	3926.02nm	3925.48nm - 3927.08nm	0.71	couple with N2O band.
	C2	N_2O	HITRAN	3926.26nm	3925.48nm - 3927.08nm	0.06	Molecular absorption to couple with C1
	X3	CH_4	HITRAN	3928.68nm	3928.62nm - 3928.72nm	0.67	Not usable due to proximity to N2O molecular band
	А	N_2O	HITRAN	3929.25nm	3928.12nm - 3930.28nm	0.08	Molecular absorption band;
	01	N_2O	HITRAN	3931.17nm	3931.00nm - 3931.40nm	0.90	Weaker N2O line.
	X1	N_2O	HITRAN	3933.83nm	3933.32nm - 3936.52nm	0.13	Absorption band; not usable due to overlap
	X2	N_2O	HITRAN	3935.38nm	3933.32nm - 3936.52nm	0.15	Absorption band; not usable due to overlap
	в	N_2O	HITRAN	3938.50nm	3938.12nm - 3938.92nm	0.22	Molecular absorption band
	O2	SO_2	HITRAN	3940.80nm	3940.44nm - 3941.24nm	0.84	Weak line. Weak S in HITRAN. Blend with weak water line.
	D1	CH_4	HITRAN	3941.47nm	3941.16nm - 3942.12nm	0.69	Blend of two methane lines. Couple with N2O band.
	D2	N_2O	HITRAN	3941.66nm	3941.16nm - 3942.12nm	0.29	N2O Molecular band for D1.

The CLEDB Coronal Inversion

Geometry and symmetries: Dima & Schad, 2020 special degeneracy

• Casini & Judge, 1999 (ApJ), Plowman, 2014 (ApJ), and Dima & Schad, 2020(ApJ), incrementally work towards this problem.

- Dima & Schad, 2020, ApJ offer a purely analytical solution to the discussed problem. Compelling 1-line and 2-line discussions are presented.
- The authors showed that some 2-line combinations will contain degenerate information based on the F atomic factor:

$$\mathsf{F}=\frac{3}{4}[J(J+1)-J_0(J_0+1)-2](g_u-g_l).$$

- The authors suggested replacing one line with an F \neq 0 counterpart: Si X ${}^{2}P_{3/2}^{o} \rightarrow {}^{2}P_{1/2}^{o}, \lambda = 1.430 \mu m, F = 0.5$
- The problem comes from both the unpolarizable nature of the J=0 level (for Fe XIII 1.0747 μ transition) and the identical Landé factors of the J=1 and J=2 levels, in standard LS coupling conditions (in the case of the Fe XIII 1.0789 μ transition).
- The Θ_B orientation is given by: $\sin^2 \Theta_B = \pm \frac{2}{3} \frac{F_1 L_1 V_2 F_2 L_2 V_1}{\overline{g_2} V_1 (I_2 \pm L_2) \overline{g_1} V_2 (I_1 \pm L_1)}$
- The analytical solutions are degenerate in sets of 4. A. B. Paraschiv The CLEDB Coronal Inversion

How can we infer magnetic fields with CLEDB?

• The atomic LS coupling approximation is not accurate. Large scale computations of Lande G factors of ions of interest will update the F factors of lines of interest (Dima & Schad, 2020; Schiffmann et al. 2021.).

• Observation geometry is crucial. In using additional information when compared with purely analytical inversions, we can match one voxel with an apparent height, leading to a less ambiguous Θ_B estimation, that is not dependent on F. Aditionally, using lines of the same ion is desirable as we avoid calculating dynamical ratios of \mathcal{A} (Judge, Casini, & Paraschiv, 2021).

CLEDB (Paraschiv & Judge, 2022) is a python coronal spectro-polarimetry package developed as part of the NSO Community Science Program Level-2 data effort, with the goal of helping heliophysics users with interpreting novel observations like the ones from the DKIST Cryo-NIRSP spectrograph and uCoMP coronagraph.

It is available online: https://github.com/arparaschiv/solar-coronal-inversion

The package is at the stage of initial release, and should be considered in development. Validation is currently non-trivial. Any contributions and suggestions are welcome!

Sar

Geometry and symmetries: Azimuth and Field Strength

The alignment solutions σ₀² depend only on the distance from the limb. Conditions in points *Q* and *P* are equivalent in terms of σ₀². The Stokes QU profiles at *Q* can be rotated towards *P*. After a matching solutions are found, the profiles are derotated.
To simplify the solution fitting, we use the CLEDB database to compute entries for |*B*| = 1*G*, only! Matching solutions are scaled via the ratio of *V_{abs}*/*V_{abs}*.

Geometry and symmetries: Height

• Database entries are stored and retrieved efficiently.

< D >

<**-□ → → → →**

3) 3

The CLEDB atomic Database

• A database for Stokes IQUV profiles is calculated using CLE to cover all possible points in an $\mathbf{r} = (x, y, z)^T$ space.

• Theoretically we should be solving over a parameter space consisting of:

 $x, y, z, T_e, n_e, \mathcal{A}, \mathcal{B}, \Theta_{\mathcal{B}}, \Phi_{\mathcal{B}}, v_x, v_T.$

• We can reduce calculations to just: $x, n_e, \vartheta, \varphi$.

• Example of CLEDB configuration: Number of calculations for each of 81 y entries $N_C = n_x \cdot n_{n_e} \cdot n_{\varphi} \cdot n_{\vartheta} = 7.9 \times 10^8$

quantity	number	range
n_e (electron density in cm ⁻³)	$n_{n_e} = 10$	[200.0 100 50.0 15.0 5.0 2.5 1.0 0.5 0.1 0.01] n ₀ (r)
y-axis (radial, units R_{\odot})	$n_y = 81$	1.0 ightarrow 1.256
x-axis (LOS, units R_{\odot})	$n_{\rm X} = 60$	-1.5 ightarrow 1.5
arphi (azimuth in $z=0$ plane)	$n_{arphi} = 180$	$0 ightarrow 2\pi$
ϑ (polar angle from +ve z -axis)	$\dot{n_{\vartheta}} = 90$	$0 ightarrow \pi$

CLE is a Fortran spectral synthesis code for magnetic dipole lines developed by P. Judge and R. Casini. A novel code PyCELP developed by T. Schad and G. Dima exists. It is not yet tested/integrated with CLEDB.

Jac.

Conceptual Basis and Motivation Spectroscopy and Counts The CLEDB Inversion Algorithm

CORONAL FIELD DATABASE INVERSION - SIMPLIFIED MODULE SCHEME

DATABASE GENERATION DIAGRAM (CLEDB_BUILD)

(口)

э

DATA PRE-PROCESSING DIAGRAM (CLEDB_PREPINV)

A. R. Paraschiv

The CLEDB Coronal Inversion

nac

A. R. Paraschiv

The CLEDB Coronal Inversion

Jac.

Output products

1. Calibrations and spectroscopy:

Stokes IQUV line core intensity and background counts Doppler Shifts Total line width Non-thermal line width Linear degree of polarization Total degree of polarization

2. Magnetic field products:

A. 1-line observations \rightarrow LOS magnetic field

 $B_{LOS} = |B| \cos(\Theta_B)$ (see Plowman 2014, ApJ; Dima & Schad, 2020 ApJ) Magnetic azimuth (Φ_B)

B. 2-line observations \rightarrow Vector magnetic fields (in addition to A)

Magnetic field strength |B|LOS magnetic component (Θ_B) LOS position of dominant emitting structure Plasma density (n_e) $|\mathbf{B}|$ together with Θ_B and Φ_B are also projected to a cartezian plane; e.g. B_x, B_y, B_z

Paraschiv & Judge, 2022, SolPhys

Jac.

Simplified fake observations: LOS retrieval

< D >

< 🗇 > < 🖻 > < 🖻 >

Simplified fake observations: LOS retrieval

< □ > < 同

•

990

∍

∢ ⊒

Ecliptic plane xy; z = 0 B_y B_z B_{tot} 2.0 20 1.00 1.00 1.00 1.00 - 1.5 15 3! 0.75 0.75 0.75 E-W 20 0.75 " N-S - 1.0 10 31 0.50 -0.50 -0.50 -0.50 10 0.5 0.25 2! 0.25 0.25 5 0.25 - 212 0.00 0.0 0.00 0.00 0 0.00 -0.25 -0.25 -0.25 -0.25 -0.5 -5 - 1! -10-0.50-0.50-0.50-0.50 -1.0-10 10 -20 -0.75 -0.75 -0.75 -0.75 -1.5 -15 5 -1.00-1.00 -1.00-1.00-2.0 -20 -30 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 Y [R₀] Y[Ro] T, LOS Speed Turb. speed ρ 1e8 2500000 40 25 1.00 1.00 1.00 1.00 30 Habbal et. al, 2011 0.75 0.75 0.75 0.75 2000000 21 20 0.50 -0.50 0.50 0.50 10 0.25 0.25 1500000 0.25 0.25 1! 0.00 0.00 0.00 0 0.00 1000000 10 -0.25 -0.25 -0.25 -0.25 -10 -0.50-0.50-0.50 -0.50 -20 500000 5 -0.75 -0.75-0.75 -0.75 -30 e XIV 530.3 nm -1.00-1.00-1.00-1.000 -40 0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 Y [R₀]

A. R. Paraschiv

Simplified fake observations: 3 large-scale dipoles

< 🗆

DQC

CLE Spectral Synthesis

A. R. Paraschiv

Sac

<∃> ∃

Simplified fake observations: CLEDB Line of Sight B estimation

• For 1-line B LOS estimations, we employ the solution offered by Dima & Schad, 2020, alongside a classic magnetograph estimation:

$$B_{LOS}^{ob} = \frac{h}{\mu_B} \left[\frac{-V}{\overline{g}(I \pm L) \pm \frac{2}{3}F \frac{L}{\sin^2 \Theta_B}} \right]$$

• Different interpretations are produced based on the input line F factor. One solution closely matched the input in the case of F=0.

Sac

Preliminary Testing

Example: A Single Point Solution

Index	χ^2	n_e	Н	D	$ \mathbf{B} $	Φ_B	Θ_B	B_x	B_y	\mathbf{B}_{z}
5982696	2.12e-2	8.10	1.18	-0.52	6.0	108.3	72.8	-1.85	5.47	1.72
6669594	2.12e-2	8.05	1.18	0.55	6.0	253.3	108.9	-1.63	-5.47	-1.93
5990814	2.13e-2	8.10	1.18	-0.52	-6.0	289.4	108.9	-1.93	5.47	1.93
6661476	2.13e-2	8.05	1.18	0.55	-6.0	72.2	72.8	-1.71	-5.52	-1.72
5982606	3.65e-2	8.10	1.18	-0.52	6.8	106.6	72.8	-1.88	6.28	2.02
6669684	3.65e-2	8.05	1.18	0.55	6.8	255.0	108.9	-1.68	-6.28	-2.29
5982697	5.64e-2	8.10	1.18	-0.52	5.9	108.3	74.5	-1.81	5.44	1.57
6669593	5.64e-2	8.05	1.18	0.55	5.9	253.3	107.1	-1.61	-5.44	-1.74
5990904	5.79e-2	8.10	1.18	-0.52	-5.4	291.2	108.9	-1.94	4.89	1.84
6661386	5.79e-2	8.05	1.18	0.55	-5.4	69.9	72.8	-1.75	-4.91	-1.60
CLE :		7.97	1.18	-0.49	6.3			-1.59	5.72	2.02

$$\chi^{2} = \frac{1}{d - p - 1} \left[\sum_{i=0,2} \frac{(S_{i} - O_{i})^{2}}{\sigma_{i}^{2}} + \frac{(S_{3} - O_{3})^{2}}{\sigma_{3}^{2}} \right]$$

Solutions are degenerate in sets of 2.

• The number of degenerate solutions is a function of observation noise.

 Database resolution will also influence the quality of inverted parameters.

 The user should balance the database resolution to the noise influence in parameter accuracy. < □ ▶

4 AR 1 4 3

4 ∃ > Jac.

A. R. Paraschiv

The CLEDB Coronal Inversion

Preliminary application: IQU only vector magnetometry

nac

• MLSO CoMP Level 2 dataset of 27th March 2012.

Preliminary application: Coronal seismology with CoMP

Preliminary application: CoMP IQU Coronal inversion with CLEDB

For coronal magnetometry with CoMP see: Tomczyk,2007, Morton et. al, 2016, Yang et. al, 2020

Preliminary application: CoMP IQU vector coronal magnetic field

Paraschiv, 2023, in prep.

ъ

Image: Image:

Ò

Main caveats and closing questions

• Eventual disambiguation of coronal vector magnetograms. CLEDB requires the sign of the magnetic field to fully remove additional degeneracies. HMI-like magnetogram are not yet achievable with DKIST LEV-2 data and/or CLEDB.

- Can we in practice combine lines from multiple atoms?
- Study PyCELP synergies.

• The current IQU implementation is a prototypwe and not yet available in the CLEDB repository.

• Complicated ARs and eruptive features are hard to recover using this implementation. IQU branch might be reliablly applicable to only synoptic use cases.

• A efficiency comparison when computing the azimuth via the phase angle vs. the linear polarization.

• It is important to estimate the densities and LOS locations of emitting plasma! Can we distinguish multiple emitting regions along the LOS?

• uCoMP and DKIST Cryo-NIRSP and DL-NIRSP CORONAL SCIENCE!

Do **EXISTING CoMP DATASETS** contain more untapped information regarding the REAL coronal magnetic field?

8m

Sar

CLEDB is publicly available: https://github.com/arparaschiv/solar-coronal-inversion Any independent tests and comments are welcome and appreciated!

arparaschiv@ucar.edu