The surface of Mercury: Using deep learning to explore its challenging flat spectra

Mireia Leon-Dasi LESIA – Paris Observatory

mireia.leondasi@obspm.fr

June 26th 2024

Mercury: the innermost planet

5 astronomical units (778 330 000 km)

Credit: University of Virginia

Mercury or the Moon?

Credit: Quickmap

First exploration by the Mariner 10 mission

MARINER 10 (NASA, 1974)

- 3 Mercury flybys
- Closest approach of 327 km
- Imaged 40% of the surface
- Discovery of Mercury's exosphere
- Discovery of Mercury's magnetic field
- Discovery of Mercury's large core

First exploration by the Mariner 10 mission

Mercury's large core is currently interpreted as the result of mantle extracted in collision or impact events (Benz et al., 2007, Asphaug & Reufer., 2014,Chau et al., 2018, Hyodo et al., 2021)

Credit: NASA

Mireia Leon-Dasi June 26th 2024 4

Revisiting Mercury with the MESSENGER mission

MESSENGER (NASA, 2017)

- 4 years in Mercury orbit
- Mapping of the surface
- Compositional information
- Discovery of Hollows
- Discovery of water ice in Mercury's North pole

Results from MESSENGER: discovery of hollows

Mireia Leon-Dasi Martin Allen (1999) and the United States of the United St

Upcoming exploration of Mercury: BepiColombo

- 2 spacecraft to explore Mercury's surface, exosphere and magnetic field
- Arrival to Mercury in December 2025
- 16 scientific instruments
- Global mapping of the surface

Main characteristics

Diameter: 4,900 km

 $\overline{(-40\% \text{ of Earth's })}$

Rocky planet

Night: -170 °C

1 Mercury day lasts 59 Earth days

Exosphere and magnetic field

Mercury: a volatile depleted planet?

Formation models of Mercury predicted a volatile-depleted planet (Cameron., 1985, Benz et al., 1988, Boynton et al., 2007, Solomon et al., 2007)

- \rightarrow Planet formation in the inner solar nebula
- \rightarrow Heating (collision or by the nebula)
- \rightarrow Loss of volatiles

Credit: NASA

Polar ice deposits The Hollows Theorem and Volcanic deposits

Deutsch et al., 2019 MDIS monochrome images retrieved from Quickmap (https://messenger.quickmap.io)

Mireia Leon-Dasi والتقليم المستقلة June 26th 2024

Volcanism on Mercury

Mireia Leon-Dasi National Mireia Leon-Dasi National Mireia Leon-Dasi National Mireia Leon-Dasi National Mireia

June 26th 2024

Explosive volcanism on Mercury

>180 vents and deposits identified (Kerber et al., 2011, Goudge et al., 2014, Thomas et al., 2014, Jozwiak et al., 2018)

Surface spectra of rocky solar system bodies

Mireia Leon-Dasi June 26th 2024 12

Airless bodies are heavily altered by space weathering

Gu et al., 2022

On Mercury, Space Weathering is dominated by **micrometeoroid bombardment** and **solar wind** irradiation (Blewett et al., 2009, Domingue et al., 2014)

Micrometeoroid bombardment:

- **Gardening**
- Glass production
- Submicroscopic iron formation
- Penetration depth ~1 cm (Jordan et al., 2022)

Solar wind ion irradiation:

- Ion implantation
- **Sputtering**
- Submicroscopic iron formation
- Penetration depth ~10 nm (Domingue et al., 2014)

Spectral effects of space weathering

Over time, space weathering produces an accumulation of submicroscopic iron, until saturation

Jordan et al., 2022

Submicroscopic iron accumulation on the Moon results in: (Hapke et al., 2001, Noble et al., 2001, Noble et al., 2007)

- Spectral darkening
- Spectral reddening (for small submicroscopic particles)
- Spectral flattening and weakening of absorption bands

Apollo 17 lunar samples spectra spectra (Pieters et al., 2016)

Spectral measurements of Mercury

MDIS MASCS/VIRS

MDIS Enhanced color map (NASA) MASCS color mosaic (Izenberg et al., 2014)

- Monochrome NAC + Multispectral WAC camera
- 12 filters
- 395 1040 nm
- Point spectrometer
- Spectral resolution: 4.7 nm
- $300 1450$ nm

Spectral units

Spectral units by MDIS

Murchie et al., 2018

Spectra of geological units by MASCS

Barraud et al., 2020

Spectra of Mercury are featureless: characterized by brightness and slope

June 26th 2024

Objectives

Instead of volatile depleted: volatiles are required to place the observed pyroclasts on Mercury

To constrain Mercury's evolution we study:

- \rightarrow The deposit size: determines volatile abundances required
- \rightarrow Eruption timing

Goudge et al., 2014

Deposits are diffuse and present different spectral properties, complicating their identification

Our objective is to define the **extent** and identify any **defining spectral properties** of pyroclastic deposits

Challenge: variety of morphological and spectral properties

Inter-deposit spectral variability $\vert \vert$ Intra-deposit spectral variability

Vent morphology **Interval and Containers** II and Irregular/Overlapping deposits

Previous studies: using MDIS false color

Extent defined by Kerber et al. 2011

Previous studies: using MDIS false color

Limitation: deposits present a diverse behaviour in different spectral channels

MESSENGER/MASCS interpolation map

Normalised reflectance

Previous studies: using MASCS footprints

350

300

 $250\,\Omega$

 $200\frac{9}{2}$

150节

 $100^{\frac{1}{2}}$

50

MASCS spectra revealed larger radius than MDIS false colour images (Besse et al., 2020, Barraud et al., 2021)

Limitation: Not all deposits are **circular** →

- Overlapping deposits
- Compound vents
- Oblique eruptions
- Topography

Tolstoj basin

Scarlatti crater

Picasso crater

Deep Learning approach

Process:

- 1. Processing footprints into **Hyperspectral** Images
- 2. Training
- 3. Latent space extraction
- 4. Clustering and feature analysis
- 5. Deposit extent definition

DECODING

Deep Learning approach: input

Training the network

Input

- \rightarrow 50,000 samples
- \rightarrow Sample: HSI subpatch (5 x 5 x 230)
- \rightarrow Spatial resolution: 0.1 deg/px
- \rightarrow Spectral resolution: 5 nm

Output For each pixel: \rightarrow 20 latent dimensions

 \rightarrow Cluster classification

Training

- \rightarrow Training for 15 epochs
- \rightarrow Training loss: 0.0018
- \rightarrow Validation loss: 0.0027

Studied parameters

- \rightarrow Patch size
- \rightarrow Latent space dimension
- \rightarrow Number of clusters
- \rightarrow Clustering algorithm
- \rightarrow Number of filters

Fixed parameters (Mei et al., 2019)

- \rightarrow Number of layers
- \rightarrow Weight decay
- \rightarrow Activation functions

Latent dimensions: highlight spectral and spatial information

Leon-Dasi et al. (2023)

Dimension 7

Dimension 18

June 26th 2024

Global latent dimensions

Latent dimension #6 highlights fresh terrains (fresh crater ejecta, young pyroclastic deposits, etc)

June 26th 2024

Global latent dimensions

Nanophase iron abundance (wt %) (From Trang et al.,

Latent dimension #4

Global latent dimensions

Latent dimension #15

Latent dimension #15 map Low Reflectance Material map (From Klima et al., 2018)

From cluster maps to deposit limits

For each deposit, an **inner cluster** and **outer cluster** are identified

Leon-Dasi et al., (2023)

Mireia Leon-Dasi 29

June 26th 2024

Extent defined by this work

Defined the extent of 55 deposits

- \rightarrow 35 isolated and 20 groups
- \rightarrow 110 vents
- \rightarrow 36 first observed here with MASCS
- \rightarrow 17 first measured overall

Results: delimiting the deposit extent

Overcoming deposit underestimation and interestimation of the state of the stat

Mireia Leon-Dasi $\sqrt{3}$ 30

Results: overlapping deposits

June 26th 2024

Results: overlapping deposits

June 26th 2024

Latent inside deposits

Reflectance at 750 nm

Reflectance at 750 nm

Upcoming BepiColombo measurements

This approach will be useful to treat the upcoming BepiColombo/SIMBIO-SYS data

SIMBIO-SYS/VIHI: VIS-NIR hyperspectral imager

- Global mapping at 400m spatial resolution
- 6.25 nm spectral resolution

SIMBIO-SYS will observe at higher resolution specific targets including:

- Pyroclastic deposits
- Hollows

Cremonese et al., 2020

BepiColombo to better constrain pyroclastic deposits

Observations from \otimes **SARE bepicularies** to answer these questions:

- **SIMBIO-SYS** Geological context (vent morphology, degradation etc.)
	- Pyroclast size and deposit roughness
	- Spectral data, submicroscopic iron estimates etc.
- **MERTIS** Deposit mineralogy, glass content, pyroclast size
- **BELA** Deposit thickness
- **MIXS/MGNS** Deposit composition
- **SERENA-MIPA** Ion precipitation and response to solar wind

Summary

Deep Learning approach to:

- **Explore** Mercury's flat spectra
- Extract reduced dimensional representation
- Define the **extent** of pyroclastic deposits

Outcome:

- Defined the extent of 55 deposits
- Identified spectral properties within the depost
- Latent dimensions as a promising tool to examine the spectral properties of Mercury

Feel free to reach out for more information!

Mireia Leon-Dasi mireia.leondasi@obspm.fr linkedin.com/in/mireiald/

