The surface of Mercury: Using deep learning to explore its challenging flat spectra

Mireia Leon-Dasi LESIA – Paris Observatory

mireia.leondasi@obspm.fr

June 26th 2024

Mercury: the innermost planet

5 astronomical units (778 330 000 km)

Credit: University of Virginia

Mercury or the Moon?

Credit: Quickmap

First exploration by the Mariner 10 mission

MARINER 10 (NASA, 1974)

- 3 Mercury flybys
- Closest approach of 327 km
- Imaged 40% of the surface
- Discovery of Mercury's exosphere
- Discovery of Mercury's magnetic field
- Discovery of Mercury's large core

First exploration by the Mariner 10 mission

Stevenson et al., 2012

Mercury's large core is currently interpreted as the result of mantle extracted in collision or impact events (Benz et al., 2007, Asphaug & Reufer., 2014, Chau et al., 2018, Hyodo et al., 2021)

Credit: NASA

Revisiting Mercury with the MESSENGER mission

MESSENGER (NASA, 2017)

- 4 years in Mercury orbit
- Mapping of the surface
- Compositional information
- Discovery of Hollows
- Discovery of water ice in Mercury's North pole

Results from MESSENGER: discovery of hollows

Upcoming exploration of Mercury: BepiColombo

- 2 spacecraft to explore Mercury's surface, exosphere and magnetic field
- Arrival to Mercury in December 2025
- 16 scientific instruments
- Global mapping of the surface

Main characteristics

Rocky Night: -170 °C Diameter: 4,900 km planet 430 °C (~40% of Earth's) Day: 1 Mercury day lasts 59 1 Mercury year Exosphere and Earth days lasts 88 Earth days magnetic field Mercury

Mercury: a volatile depleted planet?

Formation models of Mercury predicted a volatile-depleted planet (Cameron., 1985, Benz et al., 1988, Boynton et al., 2007, Solomon et al., 2007)

- \rightarrow Planet formation in the inner solar nebula
- \rightarrow Heating (collision or by the nebula)
- ightarrow Loss of volatiles

Credit: NASA

MDIS monochrome images retrieved from Quickmap (https://messenger.quickmap.io)

Polar ice deposits

Hollows

Volcanic deposits

Deutsch et al., 2019

Mireia Leon-Dasi

June 26th 2024

Volcanism on Mercury

Fagradalsfjall (Iceland) by Chris Burkard

Sarytchev volcano (Russia) from the ISS

Mireia Leon-Dasi

Explosive volcanism on Mercury

>180 vents and deposits identified (Kerber et al., 2011, Goudge et al., 2014, Thomas et al., 2014, Jozwiak et al., 2018)

Surface spectra of rocky solar system bodies

Mireia Leon-Dasi

June 26th 2024

Airless bodies are heavily altered by space weathering

Gu et al., 2022

On Mercury, Space Weathering is dominated by **micrometeoroid bombardment** and **solar wind** <u>irradiation (Blewett et al., 2009, Domingue et al., 2014)</u>

Micrometeoroid bombardment:

- Gardening
- Glass production
- Submicroscopic iron formation
- Penetration depth ~1 cm (Jordan et al., 2022)

Solar wind ion irradiation:

- Ion implantation
- Sputtering
- Submicroscopic iron formation
- Penetration depth ~10 nm (Domingue et al., 2014)

Spectral effects of space weathering

Over time, space weathering produces an accumulation of submicroscopic iron, until saturation

Jordan et al., 2022

Submicroscopic iron accumulation on the Moon results in: (Hapke et al., 2001, Noble et al., 2001, Noble et al., 2007)

- Spectral darkening
- Spectral reddening (for small submicroscopic particles)
- Spectral flattening and weakening of absorption bands

Apollo 17 lunar samples spectra spectra (Pieters et al., 2016)

Spectral measurements of Mercury

MDIS

MASCS/VIRS

MDIS Enhanced color map (NASA)

MASCS color mosaic (Izenberg et al., 2014)

- Monochrome NAC + Multispectral WAC camera
- 12 filters
- 395 1040 nm

- Point spectrometer
- Spectral resolution: 4.7 nm
- 300 1450 nm

Spectral units

Spectral units by MDIS

Murchie et al., 2018

Spectra of geological units by MASCS

Barraud et al., 2020

Spectra of Mercury are featureless: characterized by brightness and slope

June 26th 2024

Objectives

Instead of volatile depleted: volatiles are required to place the observed pyroclasts on Mercury

To constrain Mercury's evolution we study:

- → The deposit size: determines volatile abundances required
- \rightarrow Eruption timing

Goudge et al., 2014

Deposits are diffuse and present different spectral properties, complicating their identification

Our objective is to define the **extent** and identify any **defining spectral properties** of pyroclastic deposits

Challenge: variety of morphological and spectral properties

Vent morphology

Inter-deposit spectral variability

Irregular/Overlapping deposits

Intra-deposit spectral variability

Previous studies: using MDIS false color

MDIS false color image

🔰 🛛 Extei

Extent defined by Kerber et al. 2011

Previous studies: using MDIS false color

Limitation: deposits present a diverse behaviour in different spectral channels

320 nm

MESSENGER/MASCS interpolation map

Normalised reflectance

1400 nm

Previous studies: using MASCS footprints

300

250 0

200 -150 H

50

MASCS spectra revealed larger radius than MDIS false colour images (Besse et al., 2020, Barraud et al., 2021)

Limitation: Not all deposits are **circular** \rightarrow

- Overlapping deposits
- Compound vents
- Oblique eruptions
- Topography ۲

Picasso crater

Deep Learning approach

Process:

- 1. Processing footprints into **Hyperspectral** Images
- 2. Training
- 3. Latent space extraction
- 4. Clustering and feature analysis
- 5. Deposit extent definition

DECODING

Deep Learning approach: input

Training the network

X (lon)

Training

- \rightarrow Training for 15 epochs
- \rightarrow Training loss: 0.0018
- \rightarrow Validation loss: 0.0027

Studied parameters

- \rightarrow Patch size
- \rightarrow Latent space dimension
- \rightarrow Number of clusters
- \rightarrow Clustering algorithm
- \rightarrow Number of filters

Output For each pixel: \rightarrow 20 latent dimensions \rightarrow Cluster classification

Fixed parameters (Mei et al., 2019)

- \rightarrow Number of layers
- \rightarrow Weight decay
- \rightarrow Activation functions

Latent dimensions: highlight spectral and spatial information

Leon-Dasi et al. (2023)

Dimension 7

Dimension 18

June 26th 2024

Global latent dimensions

Latent dimension #6 highlights fresh terrains (fresh crater ejecta, young pyroclastic deposits, etc)

Mireia Leon-Dasi

June 26th 2024

Global latent dimensions

Nanophase iron abundance (wt %) (From Trang et al.,

Latent dimension #4

Global latent dimensions

Latent dimension #15

Latent dimension #15 map

Low Reflectance Material map (From Klima et al., 2018)

From cluster maps to deposit limits

For each deposit, an inner cluster and outer cluster are identified

Leon-Dasi et al., (2023)

Mireia Leon-Dasi

June 26th 2024

Defined the extent of 55 deposits

- \rightarrow 35 isolated and 20 groups
- \rightarrow 110 vents
- \rightarrow 36 first observed here with MASCS
- \rightarrow 17 first measured overall

Results: delimiting the deposit extent

Overcoming deposit underestimation

Irregular deposits

Mireia Leon-Dasi

Results: overlapping deposits

Mireia Leon-Dasi

Results: overlapping deposits

Mireia Leon-Dasi

June 26th 2024

Latent inside deposits

Reflectance at 750 nm

Latent dimensions mean

Upcoming BepiColombo measurements

This approach will be useful to treat the upcoming BepiColombo/SIMBIO-SYS data

SIMBIO-SYS/VIHI: VIS-NIR hyperspectral imager

- Global mapping at 400m spatial resolution
- 6.25 nm spectral resolution

SIMBIO-SYS will observe at higher resolution specific targets including:

- Pyroclastic deposits
- Hollows

Cremonese et al., 2020

BepiColombo to better constrain pyroclastic deposits

Observations from <

picolombo to answer these questions:

- **SIMBIO-SYS** Geological context (vent morphology, degradation etc.)
 - Pyroclast size and deposit roughness
 - Spectral data, submicroscopic iron estimates etc.
- MERTIS Deposit mineralogy, glass content, pyroclast size
- BELA Deposit thickness
- MIXS/MGNS Deposit composition
- SERENA-MIPA Ion precipitation and response to solar wind

Summary

Deep Learning approach to:

- Explore Mercury's flat spectra
- Extract reduced dimensional representation
- Define the **extent** of pyroclastic deposits

Outcome:

- Defined the extent of 55 deposits
- Identified spectral properties within the depost
- Latent dimensions as a promising tool to examine the spectral properties of Mercury

Feel free to reach out for more information!

mireia.leondasi@obspm.fr
linkedin.com/in/mireiald/
Mireia Leon-Dasi

