From Saturn's strong tides to the ocean of Mimas and beyond

Valéry Lainey (valery.lainey@obspm.fr)

- LTE/Paris Observatory -

26/03/2025 Astronomical Institute

Outline:

I - The Saturnian system in three « simple » questions

II - Brief recall on tides

III - Answering question 1

IV - Answering question 2

V - Answering question 3

Part I

The Saturnian system in three « simple » questions

<u>The Cassini division – Question 2</u>

<u>The Cassini division – Question 2</u>

<u>The Cassini division – Question 2</u>

The Mimas / Enceladus paradox – Question 3

Enceladus

Mimas

R = 252.1 km a = 237,948 km e = 0.0047

R = 198.2 km a = 185,539 km e = 0.0196 Part II Brief recall on tides

Tidal effects are a *differential gravitational effect,* induced by a massive object, on an extended body.

Such a deformation entails frition, and as a consequence heat production

Let's consider a moon raising tides on Saturn

Dissipation implies time lag Δt which is connected to the geometrical lag δ by: $2(\Omega - n)\Delta t = \delta$

Exchange of angular momentum and energy from Saturn's spin into the orbit

$$\frac{da}{dt} = \frac{3k_2m}{QM} \left(\frac{Er}{a}\right)^5 na$$

Q: tidal quality factor k_2 : Love number

A paper of reference that estimates Q for the giant planets is Goldreich and Soter (1966)

Assuming that the main satellites were formed beyond the synchronous orbit, one can give a higher bound for k_2/Q

A paper of reference that estimates Q for the giant planets is Goldreich and Soter (1966)

Assuming that the main satellites were formed beyond the synchronous orbit, one can give a higher bound for k_2/Q

Astrometry is the discipline that aims to provide positions of celestial objects in space with the highest accuracy.

Example 1

Example 2

Uses stars in the background to determine the relation between pixels and angle on the celestial sphere.

Integration of equations of motion

$$\ddot{\vec{r}}_{i} = -G(m_{0} + m_{i}) \left(\frac{\vec{r}_{i}}{r_{i}^{3}} - \nabla_{i} U_{\vec{i} \hat{0}} + \nabla_{0} U_{\vec{0} \hat{i}} \right) + \sum_{j=1, j \neq i}^{N} Gm_{j} \left(\frac{\vec{r}_{j} - \vec{r}_{i}}{r_{j}^{3}} - \frac{\vec{r}_{j}}{r_{j}^{3}} - \nabla_{j} U_{\vec{j} \hat{i}} + \nabla_{i} U_{\vec{j} \hat{j}} + \nabla_{j} U_{\vec{j} \hat{0}} - \nabla_{0} U_{\vec{0} \hat{j}} \right)$$

$$+\frac{(m_0+m_i)}{m_im_0}\left(\vec{F}_{\bar{i}\hat{0}}^{T}-\vec{F}_{\bar{0}\hat{i}}^{T}\right)-\frac{1}{m_0}\sum_{j=1,\,j\neq i}^{N}\left(\vec{F}_{\bar{j}\hat{0}}^{T}-\vec{F}_{\bar{0}\hat{j}}^{T}\right) + GR$$

Integration of equations of motion

$$\ddot{\vec{r}}_{i} = -G(m_{0} + m_{i}) \left(\frac{\vec{r}_{i}}{r_{i}^{3}} - \nabla_{i} U_{\vec{i} \hat{0}} + \nabla_{0} U_{\vec{0} \hat{i}} \right) + \sum_{j=1, j \neq i}^{N} Gm_{j} \left(\frac{\vec{r}_{j} - \vec{r}_{i}}{r_{j}^{3}} - \frac{\vec{r}_{j}}{r_{j}^{3}} - \nabla_{j} U_{\vec{j} \hat{i}} + \nabla_{i} U_{\vec{j} \hat{j}} + \nabla_{j} U_{\vec{j} \hat{0}} - \nabla_{0} U_{\vec{0} \hat{j}} \right)$$

$$+\frac{(m_0+m_i)}{m_im_0}\left(\vec{F}_{\bar{i}\hat{0}}^{T}-\vec{F}_{\bar{0}\hat{i}}^{T}\right)-\frac{1}{m_0}\sum_{j=1,j\neq i}^{N}\left(\vec{F}_{\bar{j}\hat{0}}^{T}-\vec{F}_{\bar{0}\hat{j}}^{T}\right) + GR$$

Integration of equations of motion

$$\ddot{\vec{r}}_{i} = -G(m_{0} + m_{i}) \left(\frac{\vec{r}_{i}}{r_{i}^{3}} - \nabla_{i} U_{\vec{i} \hat{0}} + \nabla_{0} U_{\vec{0} \hat{i}} \right) + \sum_{j=1, j \neq i}^{N} Gm_{j} \left(\frac{\vec{r}_{j} - \vec{r}_{i}}{r_{j}^{3}} - \frac{\vec{r}_{j}}{r_{j}^{3}} - \nabla_{j} U_{\vec{j} \hat{i}} + \nabla_{i} U_{\vec{j} \hat{j}} + \nabla_{j} U_{\vec{j} \hat{0}} - \nabla_{0} U_{\vec{0} \hat{j}} \right)$$

$$+\frac{(m_{0}+m_{i})}{m_{i}m_{0}}\left(\vec{F}_{i\hat{0}}^{T}-\vec{F}_{0\hat{i}}^{T}\right)-\frac{1}{m_{0}}\sum_{j=1,j\neq i}^{N}\left(\vec{F}_{j\hat{0}}^{T}-\vec{F}_{0\hat{j}}^{T}\right)+GR$$
Simultaneously with the variationnal equations
$$\frac{d^{2}}{dt^{2}}\left(\frac{\partial \vec{r}_{i}}{\partial c_{l}}\right)=\frac{1}{m_{i}}\left[\sum_{j}\left(\frac{\partial \vec{F}_{i}}{\partial \vec{r}_{j}}\frac{\partial \vec{r}_{j}}{\partial c_{l}}+\frac{\partial \vec{F}_{i}}{\partial \vec{r}_{j}}\frac{\partial \vec{r}_{j}}{\partial c_{l}}\right)+\frac{\partial \vec{F}_{i}}{\partial c_{l}}\right]$$

Integration of the variational system is much more tricky and computing time consuming than equations of motion.

THIS ASSUMES PERFECT MODELLING!!!

Summary

- 1) Get as much astrometric data as possible
- 2) Model the dynamics of the planetary system
- 3) Integrate the equations of motion and variational equations simultaneously
- 4) Solve the linear system using an inversion method
- 5) Iterate the procedure few/several times until full convergence

Quantification of tides in Saturn:

Saturnian tidal dissipation from astrometry suggests tides at least 10x stronger

$$+\frac{(m_{0}+m_{i})}{m_{i}m_{0}}\left(\vec{F}_{\bar{i}\bar{0}}{}^{T}-\vec{F}_{\bar{0}\bar{i}}{}^{T}\right)-\frac{1}{m_{0}}\sum_{j=1,j\neq i}^{N}\left(\vec{F}_{\bar{j}\bar{0}}{}^{T}-\vec{F}_{\bar{0}\bar{j}}{}^{T}\right)$$
(1)

Q=1682 +/-540 (Lainey et al. 2012)

Tajeddine et al. 2013 - Cassini NAC-ISS

Quantification of tides in Saturn:

Cassini astrometry data allow to solve for k_2 and Q at four and six tidal frequencies!

Part III Asnwering question 1

Strong tidal dissipation in Saturn is **in contradiction** with a formation of the moons 4.5 Byr ago

→A formation process that occurs much later in the history of the Solar system must be considered...

Idea: try forming the moons from an initial massive ring at the edge of the Roche limit

Saturnian Roche limit \approx Edge of the A ring

An explanation to the mass distance distibution

Thanks to the strong Satunian tides we can explain the current positions of main moons after formation at the Roche limit...

An explanation to the mass distance distibution

(b)

(f)

10²²

10²⁰

10¹⁸

10¹⁶

10²²

10²⁰

10¹⁸

10¹⁶

800

Satellites 'masses (kg

Satellites 'masses (k

Thanks to the strong Satunian tides we can explain the current positions of main moons after formation at the Roche limit...

An explanation to the mass distance distibution

Discovery of « Peggy » in 2013 on ISS image

C.D.Murray (QMUL)

→ The suggested mecanism for producing moons may still be operating today!

Part IV Asnwering question 2

The Cassini division – Question 2

Explaining the Cassini division

Strong tides imply fast evolution!

Explaining the Cassini division

Explaining the Cassini division

Baillié et al. 2019; Noyelles et al. 2019

Part V Asnwering question 3

The Mimas / Enceladus paradox – Question 3

Enceladus

Mimas

R = 252.1 km a = 237,948 km e = 0.0047

R = 198.2 km a = 185,539 km e = 0.0196 The Mimas / Enceladus paradox – Question 3

The amplitude $\boldsymbol{\varphi}$ of the physical libration of a spin-orbit moon can be related to the moments of inertia by:

 $\boldsymbol{\varphi} = 2e/(1-1/3\boldsymbol{\gamma}) \text{ with } \boldsymbol{\gamma} = (B-A)/C$

(Comstock & Bills 2003)

<u>The Mimas / Enceladus paradox – Question 3</u>

To discriminate between both interior model, one needs an extra information

 \rightarrow Using the feedback of the rotation on the orbital motion

<u>The Mimas / Enceladus paradox – Question 3</u>

To discriminate between both interior model, one needs an extra information

 \rightarrow Using the feedback of the rotation on the orbital motion

Lainey, Rambaux, Tobie et al. 2024

Conclusion -"and beyond..."

Conclusion - "and beyond..."

